Information, Organization, and Management

Unit 7: The Semantic Web: A Web of Data

Prof. Dr. Martin Hepp

http://www.heppnetz.de
mhepp@computer.org

http://www.heppnetz.de/teaching/img/

IMG - Unit 7
Contents

• The Semantic Web Vision
• Core Components
 – A Uniform Naming Schema
 – A Data Model and Exchange Format
 – Languages for Machine-suitable Vocabularies
• Core Tools
 – Editors: Protégé
 – Repositories: OWLIM
 – Reasoners: e.g. Pellet, Racer
 – Applications: e.g. Tabulator
• Standards and Related Work
 – Query Languages: e.g. SPARQL and RQL
 – GRDDL and Microformats
Resources

• Textbook
 Antoniou/van Harmelen:
 A Semantic Web Primer
 MIT Press 2004

• W3C Web Page
 – http://www.w3.org/sw/
Limitations of the Current Web: Search by Words

• Limited recall and precision due to
 – Synonyms („Car“ and „automobile“)
 – Homonyms („Jaguar“ [animal] vs. „Jaguar“ [car brand])
 – Spelling variants („organize“ [AE] vs. „organise“ [BE])
 – Spelling mistakes
 – Multiple languages

• No means to specify the relation between a resource and a term
 – Sell / buy / collect stamps
Limitations of the Current Web: Combining Web Content and Reuse

• Is it cheaper to buy a certain outdoor jacket in Austria, in Switzerland, or in the US?
 – Austria: http://www.outdoorshop.co.at/
 – Switzerland: http://www.outdoorshop.ch/

• Problem
 – Identify type of good and/or make and model
 – Currency conversion
 – Freight charges
The WWW: An Unprecedented Wealth of Data

• Between 15 – 30 billion Web pages as of 2007
• Many pages are „deep pages“, i.e. entry pages to back-end databases
Semantic Web: The Vision

"The Semantic Web is an extension of the current web in which information is given well-defined meaning, better enabling computers and people to work in cooperation."

Core Tasks in Information Processing

- **Search** for information
- **Extraction** of information
- **Processing and transactions**
- Consistent **updating** of information
- **Discovery of implicit facts**
- **Distribution and Access Control**

Example:

```
<PRODUCT>
  <NAME>Model 1</NAME>
  <PRICE cur="EUR" vat="yes">4</PRICE>
</PRODUCT>
```

Order:

5 bolts M3x15

Questions:

- Which documents must be updated if a specific fact becomes invalid?
- Each supplier of bolts is also a member of the category „supplier of hardware“.
- Who is allowed to access and modify which parts of the data?
What is the Semantic Web?
The Gopher – HTTP/HTML Analogy

1990: Gopher
Textual information

mid 1990s: HTML
Multimedia added

2006 and beyond: RDF, OWL
Meaning added

Gopher screenshot courtesy of the University of Minnesota.
Search by Logical Expressions

„I am looking for an accommodation in Tyrol with a shuttle service to a ski resort for Dec 8-10, 2008“

→ Web pages that contain offers for accommodations (huts, B&B, hotels,...) in those villages in Tyrol (Telfes, Neustift, Innsbruck,...), for which there is a shuttle service to a ski resort; and from this set only those with available rooms for Dec 8-10, 2005.
The Semantic Web on One Slide

- Unique **Identifiers** for Resources.
- A **Data Model** for statements about resources, which is compatible with the design principles of the Web (especially with its distributed nature)
- **Ontologies**, i.e. consensual domain models with some formal semantics.
 - Ontology **Languages**
 - Ontologies
The Semantic Web: Embedding Machine-accessible Meaning

mid 1990s
HTML – Multimedia added
Two Paths to Automation

• Empower machines to process natural language (HLT approach)

• Encode data in a machine-suitable way.

"Modell 1 kostet 4 EUR inkl. MwSt"

<PRODUCT>
 <NAME>Modell 1</NAME>
 <PRICE cur="EUR" vat="yes">4</PRICE>
</PRODUCT>

<PRICE cur="EUR" vat="included">4</PRICE>
Overview: Semantic Web Stack

• Identifiers: URIs
• Data Model: RDF
• Vocabulary: RDF-S and OWL
• Data
• Tools
• Applications
Universal Resource Identifiers (URIs)

• The Web is an information space in the sense that things in it have an “address”.

• These “addresses” (= names = identifiers) are called Universal Resource Identifiers (URI).

• An information object is “on the web” if it has a URI (those are sometimes called First Class Objects (FCO)).

• Universal: The Web is declared to be able to contain, in principle, every bit of information accessible by networks.

 http://www.ibm.com

 ftp://heppnetz.de/license.txt

 urn:ISSN:1560-1560

URI Syntax: `scheme://abcd/efg/h`

- URIs are divided into **schemes**
 - http:
 - ftp:
 - urn:
- URIs can be of **unlimited length**, which allows for importing any other universal space.
- In some schemes, **slashes** are used to indicate a **hierarchically structured name** or address.
 - `//` = top node
 - allows for relative addressing
 - relative references are important for scalability
 - can be extended (`///`, `/////` etc.)
 - not supported by all schemes (cf. RFC2396, p. 4)

URI Schemes

• Schemes **partition** the URI space into subspaces.

• Schemes are used to
 – **group similar types of information objects** (e.g. services, connection end points), and to
 – represent their different roles in the protocols.

• Schemes **can add or clarify properties of a set of URIs**, e.g. wrt the concept of **ownership** or **persistence**.

URI Scheme Prefixes

• Registered URI scheme prefixes
 – List maintained by IANA
 – http://www.iana.org/assignments/uri-schemes

• Unregistered URI schemes
 – Public Unregistered Schemes
 – Private Schemes

• Although many schemes are named after protocols, this does not imply that the only way to access the respective resource is via the named protocol. (cf. RFC 2396)

URI Scheme Prefixes

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Name Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ftp</td>
<td>File Transfer Protocol</td>
<td>[RFC1738]</td>
</tr>
<tr>
<td>http</td>
<td>Hypertext Transfer Protocol</td>
<td>[RFC2616]</td>
</tr>
<tr>
<td>gopher</td>
<td>The Gopher Protocol</td>
<td>[RFC1738]</td>
</tr>
<tr>
<td>mailto</td>
<td>Electronic mail address</td>
<td>[RFC2858]</td>
</tr>
<tr>
<td>news</td>
<td>USENET news</td>
<td>[RFC1738]</td>
</tr>
<tr>
<td>nnrp</td>
<td>USENET news using NNTP access</td>
<td>[RFC1738]</td>
</tr>
<tr>
<td>telnet</td>
<td>Reference to interactive sessions</td>
<td>[RFC1738]</td>
</tr>
<tr>
<td>wais</td>
<td>Wide Area Information Servers</td>
<td>[RFC1738]</td>
</tr>
<tr>
<td>file</td>
<td>Host-specific file names</td>
<td>[RFC1738]</td>
</tr>
<tr>
<td>propro</td>
<td>Prospero Directory Service</td>
<td>[RFC1738]</td>
</tr>
<tr>
<td>z39.50s</td>
<td>Z39.50 Session</td>
<td>[RFC2065]</td>
</tr>
<tr>
<td>z39.50r</td>
<td>Z39.50 Retrieval</td>
<td>[RFC2065]</td>
</tr>
<tr>
<td>xid</td>
<td>content identifier</td>
<td>[RFC2282]</td>
</tr>
<tr>
<td>mid</td>
<td>message identifier</td>
<td>[RFC2392]</td>
</tr>
<tr>
<td>vennmi</td>
<td>versatile multimedia interface</td>
<td>[RFC2122]</td>
</tr>
<tr>
<td>service</td>
<td>service location</td>
<td>[RFC2609]</td>
</tr>
<tr>
<td>imap</td>
<td>Internet message access protocol</td>
<td>[RFC2192]</td>
</tr>
<tr>
<td>nfs</td>
<td>network file system protocol</td>
<td>[RFC2224]</td>
</tr>
<tr>
<td>acap</td>
<td>application configuration access protocol</td>
<td>[RFC2244]</td>
</tr>
<tr>
<td>rtsip</td>
<td>real time streaming protocol</td>
<td>[RFC2325]</td>
</tr>
<tr>
<td>tip</td>
<td>Transaction Internet Protocol</td>
<td>[RFC2371]</td>
</tr>
<tr>
<td>pop</td>
<td>Post Office Protocol v3</td>
<td>[RFC2284]</td>
</tr>
<tr>
<td>data</td>
<td>data</td>
<td>[RFC2397]</td>
</tr>
<tr>
<td>dav</td>
<td>dav</td>
<td>[RFC2518]</td>
</tr>
<tr>
<td>opaqueoctoken</td>
<td>opaqueoctoken</td>
<td>[RFC2518]</td>
</tr>
<tr>
<td>sip</td>
<td>session initiation protocol</td>
<td>[RFC3261]</td>
</tr>
<tr>
<td>sipt</td>
<td>secure session initiation protocol</td>
<td>[RFC3261]</td>
</tr>
<tr>
<td>tel</td>
<td>telephone</td>
<td>[RFC2806]</td>
</tr>
<tr>
<td>fax</td>
<td>fax</td>
<td>[RFC2806]</td>
</tr>
<tr>
<td>modern</td>
<td>modern</td>
<td>[RFC2806]</td>
</tr>
<tr>
<td>ldap</td>
<td>Lightweight Directory Access Protocol</td>
<td>[RFC2259]</td>
</tr>
<tr>
<td>https</td>
<td>Hypertext Transfer Protocol Secure</td>
<td>[RFC2818]</td>
</tr>
</tbody>
</table>

URI, URL, URN – Terminology

- **URI**: Universal (Uniform) Resource Identifier
- **URL**: Uniform Resource Locator
- **URN**: Uniform Resource Names
- Classical View: URI is either URL or URN
- Contemporary View:
 - URI space is partitioned by URI schemes into subspaces
 - **URN is one of the URI schemes** and defines a URI subspace; the respective URI scheme prefix is “urn:”
 - **URL is an informal concept**: A URL is a URI that identifies a resource via a representation of its primary access mechanism.

[W3C: URIs, URLs, and URNs: Clarifications and Recommendations 1.0, http://www.w3.org/TR/2001/NOTE-uri-clarification-20010921/]
Uniform Resource Names (URNs)

• A subspace of the URI space
• Partitioned by the URI Scheme prefix “urn:”
• Followed by a URN Namespace Identifier or ID (URN NID)
• urn:ISSN:1560-1560

[W3C: URIs, URLs, and URNs: Clarifications and Recommendations 1.0, http://www.w3.org/TR/2001/NOTE-uri-clarification-20010921/
URN Namespace Identifiers

• IANA Registry
 – http://www.iana.org/assignments/urn-namespaces

• Examples
 – ISSN
 – ISBN
 – swift
URI Axioms (1)

- **Axiom 0 (Universality 1):** Any resource anywhere can be given a URI.
- **Axiom 0a:** Any resource of significance should be given a URI.
- **Axiom 1 (Global scope):** It doesn’t matter to whom or where you specify a URI; it will have the same meaning.

URI Axioms (2)

• **Axiom 2a (sameness):** A URI will repeatedly refer to the “same” thing (but the concept of identity might vary).

• **Axiom 2b: identity:**
 – The significance of identity for a given URI is determined by the person who owns the URI, who first determined what it points to.
 – The concept of a URI itself does not define the identity properties that exist between a URI and the resource associated with it.
 – The identity relationship, degree of persistence, and whether reuse is possible or allowed depends on the URI scheme and the owner.

• **Note 1:** The definition of “owner” may vary from URI scheme to scheme.

• **Note 2:** Two URIs are the same if (and only if) they are the same character for character. There is no definite canonicalization except for a few conversions (hex-encoding of special characters etc.).

URI Axioms (3)

- **Axiom 3 (non unique):** URI space does not have to be the only universal space.
 - Any new space of identifiers or address space can be represented as a subset of URI space.

- **Axiom “Opacity of URIs”:** The only thing one can use an identifier for is to refer to an object.

URI: Resources

- A URI represents a **resource**. A "resource" is a conceptual entity (a little like a Platonic ideal).
- A resource may be **generic** in that "as a concept it is well specified but not so specifically specified that it can only be represented by a single bit stream". As an example, successively specific resources might be:
 - The Bible
 - The Bible, King James Version
 - The Bible, KJV, in English
 - A particular ASCII rendering of the KJV Bible in English
- **The authority which allocates the URI is the authority which determines to what it refers**: Therefore, that authority determines to what extent that resource is generic or specific.
- Not all resources are network "retrievable"; human beings, corporations, and bound books can also be considered resources (see RFC2396).

URI: Fragment Identifier

- Fragment identifiers (#) are not part of a URI
 - http://www.ibm.com/aboutus.html#address
- A fragment identifier is only meaningful when a URI reference is intended for retrieval and the result of that retrieval is a document for which the identified fragment is consistently defined.
 - (I disagree 😊)

Q: RFC2396, p. 14f.
URI – Summary

- URI, URN, URL
- URI Schemes ≠ Protocols
- URN Namespace Identifiers (NIDs)
- Generic URIs, Persistence, and Identity
Cool URIs don’t change

• Cool
 http://www.uni-wuerzburg.de/faktultaeten/wifak
 http://www.uni-wuerzburg.de/studienordnungen/wifak/diplom-bwl/2004-07-31

• Uncool
 http://www.uni-wuerzburg.de/meier/showFak.asp?id=6

T. Berners-Lee: Cool URIs don’t change, http://www.w3.org/Provider/Style/URI
Data Model: RDF

Peter knows Mary
Mary works at Siemens
Siemens produces computers.
Data Model: RDF

Peter knows Mary
Mary works at Siemens
Siemens produces computers.
Fundamental Idea:
Link Data by Unique Identifiers for Entities
... on at the Web scale...
The W3C RDF Validator

RDF Validation Results

Source | Triples | Messages | Graph | Feedback | Back to Validator input

Validation Results
Your RDF document validated successfully.

The original RDF/XML document

```xml
1: <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
2:   xmlns:dc="http://purl.org/dc/elements/1.1/">
3:   <rdf:Description rdf:about="http://www.w3.org/">
5:   </rdf:Description>
6: </rdf:RDF>
```

Graph of the data model

http://www.w3.org/RDF/Validator/
Vocabulary

• We need to use a shared, machine-readable vocabulary.
• Ideally, a computer should be able to „understand“ part of the vocabulary, e.g.,
 – Spot inconsistencies and
 – Compute implicit facts
Vocabulary: Languages

• RDF-S
• OWL DLP
• OWL Lite
• OWL Full
• Rule Languages
• Useful Language Fragments
Data

• We have to augment existing Web data by references to such vocabularies etc.
• This is called „Annotation“.
• It can be done by humans, semi-automatically, or fully automatically.
• Problem: Data and annotation must be kept in sync.
Tools
Applications

• Life Sciences
• Social Network Tools
• Semantic Desktop
• Knowledge Management
• HR / Skills Matchmaking
• Semantic Search Engines
• Etc.
Components of the Semantic Web

External Resources
- urn:ISSN:1234-3456
- tel:+1-239-590-7311

Network-accessible Resources
- mailto:psmith@ibm.com
- ftp://www.ibm.de/disclaimer.txt
- http://purl.org/dc/elements/1.1/creator

URI Space

+ RDF statements
<urn:ISSN:1234-3456> <http://purl.org/dc/elements/1.1/creator> <mailto:psmith@ibm.com>

+ formal semantics: RDF-S \rightarrow OWL:

 A creator is a subclass of person.
 isMarriedTo is a symmetric property.

Ontologies

Tools
- Jena (HP)
- Snobase (IBM)
- ICS-FORTH RDFSuite
- openRDF Sesame

APIs
- RDF Storage and Retrieval
- Business Applications!
...the Semantic Web is NOW!

- Technology is pretty mature
- Major corporations are preparing products and services
- Lots of open-source software
- Semantic Wikis and DBpedia
- Open Linked Data initiative
Thank you!

The slides of today’s class will be available at http://www.heppnetz.de/teaching/img/ shortly.