
Product Reasoning Services: Economic Relevance and
Architectural Approaches 469

Product Reasoning Services: Economic Relevance and
Architectural Approaches

Dipl.-Kfm. Martin Hepp, Universität Würzburg

hepp@martinhepp.de

Contents

1. Introduction 470

2. Required Services for Electronic Markets 470
2.1. Product Comparison 472
2.2. Product Classification / Formal Product Description 472
2.3. Knowledge-based Size Conversion Service 473
2.4. Further Examples 474

3. Web Services for Reasoning Tasks 474
3.1. Advantages of Self-contained, Encapsulated Services 475
3.2. Incentive Conflicts 475
3.3. Decoupling 475
3.4. Competition and Evolution 476

4. Implementation 476

5. Conclusion 476

References 477

Citation Information

Hepp, Martin: Product Reasoning Services: Economic Relevance
and Architectural Approaches. In: Dangelmaier, W. et al. (Eds.):
Innovationen im E-Business. Fraunhofer-ALB, Paderborn 2003,
p. 469-477. PDF file available at

www.heppnetz.de/prs-hepp2003.pdf

Product Reasoning Services: Economic Relevance and
Architectural Approaches

1. Introduction

Digital business transactions are being carried out on a vast number of di-
verse systems all around the world. Up to now, one single, monolithic trad-
ing and messaging platform has not evolved and will probably not exist in
the foreseeable future. Instead, different industries use different systems,
message formats, vocabularies (e.g. product codes), etc. It seems that we
will have to deal with a heterogeneous and distributed environment for
future E-business transactions.

If that is the case, those functionalities which are needed by users from
various industries or using different technology should be implemented as
independent services. This is for two reasons. First, they will frequently not
be part of library-like standard software packages, because they might
address requirements of a very specific domain. The second and more
important argument for this approach is that it allows for those services to
be continuously improved independently from other components’ mainte-
nance cycles. A service that calculates the fraud risk of specific business
transaction might, for example, require more frequent updates with regard
to the knowledge base and heuristics included than the shopping system
that calls it.

This paper argues that one major obstacle on the way to fully integrated
business processes is the amount of reasoning tasks which require manual
interaction. It is obvious that numerous business transactions include rea-
soning tasks, e. g. about goods, services, or delivery details.

Reasoning is here used as a term for deriving new knowledge from existing
knowledge. Examples of such reasoning tasks are the following queries:

- Can product 1 be used as a substitute for product 2?

- Does a specific product (described by unstructured text data or a
vendor-specific number) belong to a given class of a classifica-
tion system (eCl@ss, UN/SPSC,…)?

- Which will be the appropriate shoe size, derived from a
vectorised foot shape and the desired brand?

The paper identifies economically relevant reasoning services, discusses
architectural issues, and suggests suitable method calls with the respective
parameters.

2. Required Services for Electronic Markets

Reasoning can be defined as a system’s ability to “derive conclusions (e.g.
diagnoses, designs, schedules) that are sanctioned by its knowledge”
(Greiner/Darken/Santoso 2001, p. 2). The crucial difference to a mere da-

Product Reasoning Services: Economic Relevance and
Architectural Approaches 471

tabase query is that the desired answers are not explicitly stored in the sys-
tem (Greiner/Darken/Santoso 2001, p. 2), but are gained out of implicit
knowledge in the knowledge base and possibly from external sources. It is
even possible that one reasoning service buys advice from another reason-
ing service or tries to validate its own conclusions by comparison with oth-
ers.

The following is a short and incomplete list of areas of application that
would benefit from access to such reasoning services.

- Agent-based E-commerce in general does not only require an
XML-framework for document exchange and semantically un-
ambiguous encoding (cp. Glushko/Tenenbaum/Meltzer 1999),
but moreover access to complimentary information or services in
order to determine the best match. Agents need not only be able
to buy and sell goods, but also such additional information or
advice. They should thus be able to query reasoning services.

- This is especially true for agent-based arbitrators (Hepp 2002,
p. 482-485) who try to make use out of price dispersion among
different market places and thus help to increase overall market
integration.

- Reasoning about legal aspects: An agent or a computer sys-
tem might need to know whether a specific business transaction
complies with the laws in the relevant region during a given pe-
riod of time. This is what human actors expect when asking the
legal department for advice.

- Reasoning about risks: The risk associated with a specific
business transaction is determined by a multitude of factors, e.g.
the opponents’ identity, the value of the transaction, the kind of
goods or services traded, the delivery address, etc. It would be
useful for many applications to determine the risk of fraud or
other mischief. Credit card authorisation processes are a form of
such reasoning about risks, but are limited to the payment.

Reasoning services are most useful when the result to a query is deter-
mined not only by one single parameter but by a multitude of factors, to
which the querying application has no adequate access. Examples are
situations where the time, location, or the identity of the parties involved in-
fluence the result.

Such reasoning engines will be important components of future eBusiness
architectures. This is because for a huge set of transactions, computer sys-
tems require answers to such queries, in order to be able to perform the re-
spective transaction autonomously. The following examples focus on rea-
soning about products and services, though the main idea can be as well
applied to further domains.

Product Reasoning Services: Economic Relevance and
Architectural Approaches

2.1. Product Comparison

Price-comparison agents, agent-based arbitrators, CRM solutions or cata-
logue management software need to be capable to judge whether two dif-
ferent products can be treated as instances of the same kind, i.e. whether
the one product can be used as a substitute for a second one or whether it
makes sense to list both in the same catalogue section.

This could be implemented as a method call of the following kind:

public float compareProducts (String Product1, String Product2)

The input parameters “Product1” and “Product2” could be either unstruc-
tured text descriptions or small XML-documents, depending on the applica-
tion domain and the intelligence of the reasoning engine. The resulting float
value will return the measure of similarity.

The appropriate threshold will depend on the application domain. A cata-
logue management solution will accept a lower degree of similarity,
whereas an agent-based arbitrator will require a remarkably higher value.

It should be noted that it is not necessary to have one single service for all
domains. Moreover, services for specific subdomains will probably evolve,
e.g. “compareDigitalCameras(…)” or “compareBuildingMaterials(…)”.

2.2. Product Classification / Formal Product Description

This task is performed by most catalogue data rationalisation tools and ser-
vices, which need to transform existing, poorly structured and semantically
ambiguous data into well-structured XML documents (e.g. BMEcat or an
xCML catalogue instance). According to DOLMETSCH, US content providers
claim to be able to rationalise about 60 % of English data sets automatically
(Dolmetsch 2000, p. 180). This seems to be a high degree of automation,
but reveals on the second view the necessity for further improvements, as
almost every second data set requires manual interaction.

Product Reasoning Services: Economic Relevance and
Architectural Approaches 473

Figure 1. Deriving formal product descriptions from semi-structured input as a reasoning task.

Though catalogue management is the most obvious area of application for
this functionality, there are many more. Any kind of higher level reasoning
or agent-based decision regarding products first requires semantically
encoded product descriptions. Thus, it makes sense to implement this func-
tionality as an independent reasoning service. An appropriate method could
look like the following.

public String formalProductDescription (String productDescription, String language)

The input parameter “productDescription” will usually be unstructured text
data and the string parameter “language” should contain the language
according to ISO-639. The resulting string will return a formal product
description, e.g. the appropriate eCl@ss category plus values for all
relevant attributes of that category. Figure 1 illustrates this kind of service.

2.3. Knowledge-based Size Conversion Service

Today’s garment sizes are no real standards, as size “extra large (XL)”
from brand A might be smaller than “large (L)” from brand B. It is obviously
impossible to order shoes just on the basis of the numerical shoe size, no
matter which size system is being used. This is a major inhibitor for E-
commerce in the clothing industry. A Web Service that reasons about suit-
able sizes (and, especially for shoes, suitable brands) would be extremely
valuable and could foster the development of integrated shopping solutions
for that segment. Such a service could be invoked in the following way.

public float determineShoeSize (String footShape, String manufacturer, float soleLength)

IBM ThinkPad R32 2658 – DCG,
mobile Intel Pentium 4 processor,

1600 MHz, 30 GB HDD,...

Knowledge
Base

Web Service
generating

formal product
descriptions

Reasoning
Engine

C
alling Application eCl@ss class="27-36-01-01"

AAA001001="www.ibm.com"
XYZ001234="30.000.000.000"

input: plain text

result: formal description

Product Reasoning Services: Economic Relevance and
Architectural Approaches

The input parameter “footShape” should be an XML document containing
the foot shape as Scalable Vector Graphics (SVG) data and the string
parameter “manufacturer” should contain the chosen shoe brand, either as
URI (“www.lloyd-shoes.de”) or encoded as DUNS. The parameter
“soleLength” represents the total sole length in inches or centimeters. Addi-
tional parameters (e.g. gender) might be useful.

The resulting float value will return the suitable shoe size, either in the EU
or the US size system.

2.4. Further Examples
Another interesting area of application is reasoning about risks: Some
business transactions do not take place in an integrated, digital way at pre-
sent, because one or both contract parties are afraid of fraudulent oppo-
nents. In the history of trade, merchants and consumers have developed
sophisticated skills for judging the probability of a fraudulent opponent. This
judging is nothing but a reasoning task: An attempt to calculate the prob-
ability of a bogus transaction on the basis of incomplete knowledge. One
could argue, however, that a simple database with a credit record of all
possible business parties would do the job. But this does not stand against
a thorough analysis, because the risk of a transaction might not be com-
pletely determined (and, if determined, not to be entirely derived from) the
opponent’s identity. It might be necessary to know the ordered good cate-
gories, the payment details, or the delivery address.

public float determineFraudRisk (String customerAddress, String delivery-
Address, String orderedGoods, float total, String paymentDetails)

with the string parameters containing either unstructured text data or well-
formed XML-documents. The resulting float value represents the probability
of a fraudulent transaction (0=0 %, 1=100%).

More sophisticated reasoning services could generate statements on

- the amount of duties due for a given product description and the
respective countries of destination and origin or

- transportation requirements.

3. Web Services for Reasoning Tasks

Such reasoning engines could, of course, be part of the internal logic of ap-
propriate E-business applications. However, there are several arguments in
favour of implementing them as independent components, e.g.

- better reusability,

- incentive conflicts,

- decoupling of the dynamics of the domains involved, and

Product Reasoning Services: Economic Relevance and
Architectural Approaches 475

- evolutionary improvement, facilitated through diversification and
competition.

There is a general trend to split the functionality of solutions into parts,
which arises e.g. from the “volatile nature of business requirements” and
the “need to rapidly introduce new products in value chains” (Arsanjani
2002, p. 31). For methods that need to be remotely invoked in a distributed
environment, Web Services seem to become the architectural component
of choice. It is thus reasonable to implement the respective reasoning en-
gines as SOAP-based Web Services.

3.1. Advantages of Self-contained, Encapsulated Services

One of the advantages of Web Services is that they are platform and pro-
gramming language neutral (IBM Web Services Architecture team 2000,
p. 1). They further help to avoid the brittleness of monolithic applications
(IBM Web Services Architecture team 2000, p. 2) and make the resulting
architecture less sensitive to environmental change.

3.2. Incentive Conflicts

With regard to reasoning services, economical aspects like trust, transpar-
ency, and incentive structures are equally important as technical details.
Product comparison, for example, concerns the fundamental functionality of
a market. It is obvious that this may lead to incentive conflicts. If the rea-
soning functionality is part of a monolithic software application, it will be
very difficult for the users to detect biased reasoning results.

Self-contained Web services, of course, do not automatically solve all trust
and incentive issues. They facilitate, however, comparison and selection by
the users.

It is even possible that “meta” Web Services will evolve that judge the
quality and trustworthiness of other Web Services.

3.3. Decoupling

If parts of a systems are subject to different domain dynamics, this should
be considered when decomposing the functionality into a set of Web Ser-
vices (Stiemerling 2002, p. 443). Otherwise, the diverse dynamics will over-
lay and maintenance will be extremely difficult. Imagine if an improved
matching algorithm for the comparison of DVD players or an updated ontol-
ogy for digital cameras required a release change of the whole catalogue
data management solution.

This is consistent with the prevailing assembly-oriented view of software
engineering, having modularisation and separation of concerns as key ele-
ments (Arsanjani 2002, p. 31).

Product Reasoning Services: Economic Relevance and
Architectural Approaches

3.4. Competition and Evolution

It will foster the evolutionary improvement of reasoning services if users
and applications can easily switch between service providers. This is for
two reasons. First, there will be competition among the providers. Second
and more important, it will be a lot easier to compare two or more services
with similar functionality. In the long run, this will yield better reasoning ser-
vices. A third advantage will be the availability of backup services.

Thus, there can and should be multiple web services from different provid-
ers delivering similar functionality. This transforms the idea of second
sourcing strategies from traditional industries to modular E-business
applications. As Web Services can be described in a formal, machine-
understandable way (IBM Web Services Architecture team 2000, p. 4), an
application can automatically try to locate an alternative web service if the
preferred provider is temporarily unavailable.

4. Implementation

Implementing Web Services that provide reasoning functionality poses
several design issues, especially

- the design of a suitable reasoning engine and knowledge repre-
sentation,

- internal and external knowledge representation and mainte-
nance,

- ontological aspects (regarding the communication between
caller and service on the one hand and the use of external
sources of knowledge through the service on the other hand)
and

- security, trust, and billing.

A prototype for product comparison is being developed at present. The fur-
ther research will show to what extent these problems will be managable
with reasonable effort.

5. Conclusion

Future E-business architectures will require access to reasoning services.
Implementing them as self-contained Web Services will be the architecture
of choice, because it solves a multitude of problems, of which incentive
conflicts, decoupling of the domain dynamics, and the need for diversity are
the most important ones.

Product Reasoning Services: Economic Relevance and
Architectural Approaches 477

I would like to thank P. R. Balasubramanian from the Boston University for
valuable discussions and the School of Management at the Boston Univer-
sity for generous access to their resources.

References

Arsanjani, Ali (Arsanjani 2002): Developing and Integrating Enterprise
Components and Services, in: Communications of the ACM, 45 (2002), 10, p. 31-34.

Dolmetsch, Ralph (Dolmetsch 2000): eProcurement. Sparpotential im
Einkauf, München, 2000.

Glushko, Robert J.; Tenenbaum, Jay M.; Meltzer, Bart (Glushko/
Tenenbaum/Meltzer 1999): An XML Framework for Agent-based E-commerce, in: Commu-
nications of the ACM, 42 (1999), 3, p. 106-114.

Greiner, Russell; Darken, Christian; Santoso, N. Iwan (Greiner/Darken/
Santoso 2001): Efficient Reasoning, in: ACM Computing Surveys, 33 (2001), 1, p. 1-30.

Hepp, Martin (Hepp 2002): Interoperabilität, Metamarktplätze und agen-
tenbasierte Arbitrageure, in: Dangelmaier, W.; Emmrich, A.; Kaschula, D. (Eds.), Modelle im
E-Business, Paderborn, 2002, p. 475-489.

IBM Web Services Architecture team (IBM Web Services Architecture
team 2000): Web Services architecture overview. The next stage of evolution for e-business,
in: www-106.ibm.com/developerworks/web/library/w-ovr.

Stiemerling, Oliver (Stiemerling, Oliver 2002): Web-Services als Basis
für evolvierbare Softwaresysteme, in: Wirtschaftsinformatik, 44 (2002), 5, p. 435-445.

