
GenTax: A Generic Methodology for Deriving OWL
and RDF-S Ontologies from Hierarchical Classifications,

Thesauri, and Inconsistent Taxonomies

Martin Hepp, Jos de Bruijn

Digital Enterprise Research Institute (DERI), University of Innsbruck
mhepp@computer.org, jos.debruijn@deri.org

Abstract. Hierarchical classifications, thesauri, and informal taxonomies are
likely the most valuable input for creating, at reasonable cost, non-toy
ontologies in many domains. They contain, readily available, a wealth of
category definitions plus a hierarchy, and they reflect some degree of
community consensus. However, their transformation into useful ontologies is
not as straightforward as it appears. In this paper, we show that (1) it often
depends on the context of usage whether an informal hierarchical categorization
schema is a classification, a thesaurus, or a taxonomy, and (2) present a novel
methodology for automatically deriving consistent RDF-S and OWL ontologies
from such schemas. Finally, we (3) demonstrate the usefulness of this approach
by transforming the two e-business categorization standards eCl@ss and
UNSPSC into ontologies that overcome the limitations of earlier prototypes.
Our approach allows for the script-based creation of meaningful ontology
classes for a particular context while preserving the original hierarchy, even if
the latter is not a real subsumption hierarchy in this particular context. Human
intervention in the transformation is limited to checking some conceptual
properties and identifying frequent anomalies, and the only input required is an
informal categorization plus a notion of the target context. In particular, the
approach does not require instance data, as ontology learning approaches would
usually do.

Keywords. Ontology engineering, ontology learning, OWL, RDF-S, reuse,
taxonomies, thesauri, classifications, UNSPSC, eCl@ss, e-business

1. Introduction

Hierarchical classification standards, thesauri, and such taxonomies that were not
initially designed to be used as ontologies exist in many domains. They are likely the
most promising sources for the creation of domain ontologies at reasonable costs,
because they reflect some degree of community consensus and contain, readily
available, a wealth of category definitions plus a hierarchy. For instance, UNSPSC
[1], a standard categorization for products and services and often referred to as a
products and services ontology for e-business, contains 20,789 categories (in version
7,0901) and the similar but more expressive industrial standard eCl@ss [2] defines
25,658 categories plus 5,525 precisely specified object and datatype properties (in
version 5.1de). The products classification in eBay, as an additional example,
includes more than 2,000 categories for computer and networking equipment alone.

2 Martin Hepp and Jos de Bruijn

For a quantitative analysis of the content and domain coverage of such standards in
the products and services domain, see [3].
While it is tempting to write simple scripts that mechanically create ontology classes
for the categories in the source standard and rdfs:subclassOf relations for the
edges constituting the hierarchy, as has been done by [4] and [5], this straightforward
approach often yields ontologies that are of limited practical use, since it implies a
particular interpretation of the categories so that the original hierarchical order is a
valid subsumption hierarchy. If, for example, “ice” is a subcategory of “beverages” in
the original hierarchy, this naïve transformation forces us to read the category
“beverages” as something like “beverages and related stuff from a purchasing
manager’s perspective”, because only then holds that all instances of the former class
are also instances of the latter. While this choice is a valid transformation, it does
often not yield the most useful ontologies, as has been shown in [6] and [7]. In
particular, the ontology classes would not be sufficiently narrow to describe actual
products or services instances in an unambiguous way.

The main cause for this problem is that, due to the informal nature of the original
schemas, the meanings of (1) the categories, (2) the hierarchical relations between
them, and (3) the task of assigning an instance to a category are usually blurry, and
the meanings of the three components are not clearly separated from each other. This
means that such informal specifications entail multiple possible ontologies. For
example, we can interpret the categories in a way so that the original hierarchy forms
a consistent subsumption hierarchy and can be represented using
rdfs:subClassOf, or we can interpret the categories in another way but must
then use another transitive, binary relation of the kind “A is a subcategory of B in
some context” in order to capture the hierarchy [6, 7].

Since most categorizations were not created under rigorous knowledge engineering
methodologies, they often suffer from additional conceptual anomalies, e.g. local
names or a varying semantics of the hierarchy relation by depth of branching. Such
anomalies are sometimes found in only relatively small parts of the categorization
schema. They may thus not become apparent by a quick view on a part of the
specification.

Besides these difficulties in understanding the original semantics and selecting a
useful interpretation for a given application, we are additionally constrained by the
expressiveness of popular ontology formalisms. OWL DL, for example, does not
allow the definition of transitive relations between ontology classes, which may force
us to invent suitable ontology modeling patterns as workarounds.

Finally, it is highly desirable that the generation of derived ontologies is automated
as much as possible, because of the high number of categories.

1.1. Classification, Thesaurus, and Taxonomy

The terms thesaurus and taxonomy are well established in ontology research.
Basically, a thesaurus is a collection of concepts that are augmented by three types of
relations: “broader term” (BT) and “narrower term” (NT), which may be read as a
hierarchical order, and “related term” (RT), which is used to capture conceptual
proximity [cf. e.g. 8]. An important characteristic of the NT/BT relation is that it is
semantically less specific than a subclassOf relation used in ontology engineering for

GenTax: A Generic Methodology for Deriving OWL and RDF-S Ontologies 3

building a subsumption hierarchy, since an instance that fits one subcategory of a
thesaurus needs not to be an instance of a the respective parent category. For example,
“ice cubes” may be a narrower term to “beverages”, but instances of the category “ice
cube” are not instances of the category “beverage” if we read the categories literally.

A taxonomy is different from a thesaurus in that it contains a subsumption
hierarchy in the form of transitive subclassOf relations, i.e. each instance of a class
can be assumed to be also an instance of all parent categories. It should be noted that
hierarchical classifications are sometimes imprecisely referred to as taxonomies even
though they do not include a real subsumption hierarchy.

Classifications are sets of concepts and have been used for ages as a means of
grouping entities by similarity. It is important to stress that the initial purpose of
classification was not to capture the essence of things, i.e. modeling a part of the
world, as in ontology engineering, but aggregating entities for some arbitrary purpose.
Also, a hierarchical order is a frequent but not a mandatory property of classifications.
Sometimes, classifications are assumed to be limited to hierarchical classifications,
which are rooted trees where the semantics of the edges may vary widely depending
on the purpose and context of usage [cf. 9].

In this paper, we will subsume all three types, i.e. taxonomies, thesauri, and
hierarchical classifications under the term hierarchical categorization schema, which
all have in common that they include a set of categories and some form of a
hierarchical order. There are two main reasons for this unified view on the three
variants. First, it may depend of the context of usage whether a given collection is a
taxonomy, a thesaurus, or just a hierarchical classification. Second, we want to
provide an approach that can be directly applied to all three types, thus allowing us to
reuse the wealth of any such schemas for building domain ontologies, which are
urgently needed for making the Semantic Web a reality.

1.2. Our Contribution

In this paper, we (1) show that it often depends on the context of usage whether an
informal, hierarchical categorization schema is a classification, a thesaurus, or a
taxonomy, (2) develop a novel methodology for mechanically deriving consistent,
lightweight ontologies for a particular context from hierarchical classifications,
thesauri, or taxonomies, even if they contain typical conceptual anomalies, (3) present
suitable modeling patterns for RDF-S and OWL-DLP that require no reasoning
support beyond rdfs:subClassOf, which allows for the use of the resulting
ontologies with lightweight, scalable reasoners and repositories like OWLIM [10],
and (4) demonstrate the usefulness of our approach by transforming the e-business
categorization standards eCl@ss [2] and UNSPSC [1] into fully-fledged ontologies.

We also propose to use deductive statistics for the diagnosis of common anomalies
and for selecting modeling options when handling large categorization schemas. This
allows us to quantify the likelihood that the resulting ontology is consistent without
the need to evaluate the complete schema manually.

The structure of the paper is as follows: In section 2, we present a unified model
for hierarchical classifications schemas, thesauri, and taxonomies, which takes into
account the role of contexts. In section 3, we present our methodology for deriving
ontologies from hierarchical categorization schemas. In section 4, we show how our

4 Martin Hepp and Jos de Bruijn

approach can be successfully applied to the representation of eCl@ss and UNSPSC in
RDF-S and OWL. In section 5, we discuss our findings and compare them to related
works.

2. A Uniform Model of Classifications, Thesauri, and Taxonomies

In this section, we will present a unified formal model that fits any kind of
hierarchical categorization schema, be it a domain classification, a thesaurus, or a
taxonomy.

2.1. Overview

When taking the categories found in a hierarchical categorization schema as the
basis for the creation of an ontology, we face two fundamental problems: First, the
meaning of the categories may vary by context. With context we mean in here a
domain of usage over which a category label is interpreted. Second, unless there is a
formal definition of the semantics of the arcs constituting the hierarchy, the meaning
of the category concepts is not determined independently of the meaning of that
hierarchy relationship, i.e. both are tangled. For example, a category labeled “TV Set”
can, depending on the context of usage, mean very different things, e.g. (1) any entity
that is an actual TV set, (2) all TV sets and somewhat related items, (3) all invoices
and cost statements that are related to TV sets, or (4) anything that can in any context
be regarded as related to TV sets.

In the original fields of usage, this blurriness constitutes no serious problems, since
one usually never expresses that an entity is an instance of a particular category, but
rather assigns entities to categories in well-defined contexts. Thus, incompatible
meanings of the categories do usually not become apparent. Since a relation like
rdf:type is never used, it is no problem that in catalog data exchange contexts,
actual TV set makes and models are assigned to the UNSPSC category “TV Set”,
while for spend analysis, invoices reflecting TV set and TV cabling purchases are put
into the same category.

One could easily be tempted to trace back these problems to a lack of
understanding of the original context and assume that there was one correct
interpretation of the semantics of the categories. However, this is not the case, since
we can observe that the very same categorization schemas are used in very different
contexts with varying interpretations. When we want to build useful ontologies,
however, we need to be clear about the semantics of the resulting ontology classes,
i.e. what it means to be an instance of this very class.

Two examples might further illustrate this fundamental problem: The hierarchies
of both UNSPSC and eCl@ss were created on the basis of practical aspects of
procurement, treating those commodities that “somehow” belong to a specific
category, as descendents of this closest category. This makes “ice” a subcategory of
“non-alcoholic beverages” in UNSPSC and “docking stations” a subcategory of
“computers” in eCl@ss. Now, there exists at least one context in which the hierarchy
relation can be read as a taxonomic relation in the sense of “rdfs:subClassOf”,
i.e. each instance of “ice” is also an instance of “non-alcoholic beverages” and each
instance of “docking station” is also an instance of “computers”. Then, however, the

GenTax: A Generic Methodology for Deriving OWL and RDF-S Ontologies 5

intension of the class “computers” is no longer any computer, but the concept
“computer” from e.g. the perspective of cost accounting or spend analysis, where an
incoming invoice for a docking station can be treated as an incoming invoice for a
computer. Similarly will “non-alcoholic beverages” no longer represent all non-
alcoholic beverages, but the union of non-alcoholic beverages and related
commodities.

The negative consequence of interpreting the hierarchy as being equivalent to
rdfs:subClassOf, is obvious: We can no longer use the resulting classes e.g. for
buying processes, because a search for all instances of “computers” will also return
docking stations, and ordering the cheapest available instance of non-alcoholic
beverages will very likely return just ice cubes. One could argue that exactly this
narrow definition of the classes is the original semantics of the categories. However,
this is not true, since the plain text descriptions for these classes in UNSPSC and
eCl@ss define the categories in the generic sense.

In a nutshell, most hierarchical categorization schemas are used with varying
semantics in multiple contexts, and depending on the respective context, the hierarchy
relations may constitute a subsumption hierarchy or just “narrower then/broader then”
relations. Our claim is that by restricting the interpretation of a categorization scheme
to a particular context, we can derive more useful ontologies, even if that means that
the hierarchical order of the original schema does not constitute a subsumption
hierarchy in this particular context.

2.2. Formal Definition

We view a hierarchical categorization schema as a directed graph where nodes
represent categories and edges represents the “narrower term” or “has subcategory”
relation. Depending on the context, a set is related to each category. This set
represents the items associated with the category in a particular context.

Formally, a hierarchical categorization schema S is a 6-tuple
CV l,lJ,C,E,V,=S with:

• V a set of categories,
• E a binary relation over V: VV:E × reflecting the original edges in the

hierarchy,
• C a set of contexts,
• J a partial function which assigns to every context Cc∈ a partial function which

assigns to every category Vv∈ a set of items such that J(c)(v) is the set of items
associated with category v in context c,

• lV a function which associates labels with categories: stringV:lV → , and

• lC a function which associates labels with contexts: stringC:l C → .

We can see from the definition that a category is interpreted differently depending on
the context of usage. We say that the interpretation of a category Vv∈ in a context

Cc∈ , denoted ()vS c , is the set () ()()vcJ=vS c . The interpretation of a

6 Martin Hepp and Jos de Bruijn

category Vv∈ , denoted S(v) is the union of the interpretations of v at every context
in C: () (){ }Cc|vS=vS c ∈∪ .
 Using the formal model, we can specify a number of properties which a
categorization schema may have. First of all, it is not clear whether a particular
hierarchical classification is a consistent taxonomy or rather a thesaurus.

We would call a classification S a taxonomy, if the hierarchy is a valid
subsumption hierarchy, i.e., for all pairs of concepts va, vb holds that if va is a
descendant of vb then va is also a subclass of vb. Formally, S is a taxonomy if, and
only if, for all Vv,v ba ∈ holds:

() ()baab vSvSthenEv,vif ⊆∈ .
We call S a taxonomy with respect to context c if the interpretations of all

categories in context c form a valid subsumption hierarchy. Formally, S is a taxonomy
with respect to a context Cc∈ if, and only if, for all Vv,v ba ∈ holds:

() ()b
c

a
c

ab vSvSthenEv,vif ⊆∈
Several of the hierarchical classification schemas we looked at are taxonomies only
for some contexts.
 We say a categorization is cyclic if there is a Vv∈ such that ()Etrvv, ∈ with
tr(E) the transitive closure of E. For the remainder of this paper, we assume the input
categorization not to be cyclic.

3. Deriving OWL and RDF-S Ontologies from Hierarchical
Categorization Schemas

In this section, we describe a novel approach of deriving consistent OWL and RDF-S
ontologies from hierarchical categorization schemas. Our approach allows for the
semi-automatic creation of meaningful ontology classes for a particular context while
preserving the original hierarchy, even if the latter is not a consistent subsumption
hierarchy in this particular context. The basic idea of our GenTax methodology is to
derive two ontology classes from each category: one generic concept in a given
context and one broader taxonomic concept which allows preserving the original
hierarchy.

The input required is minimal and limited to (1) an informal specification of a
hierarchical categorization schema as defined in section 2.2 and (2) a notion of the
context in which the ontology should be used. In particular, we do not need instance
data or any additional information, as most ontology learning approaches usually
would. The transformation itself is semi-automatic in the sense that human
intervention is limited to checking some conceptual properties and identifying
frequent anomalies. In other words, the actual generation of the ontology can be done
by a script that only needs to be configured properly by a human.

The resulting ontologies can be either RDF-S or OWL DLP; in fact, they require
no reasoning support beyond rdfs:subClassOf, which allows for the use of
lightweight, scalable reasoners, while still being able to merge an OWL DLP variant

GenTax: A Generic Methodology for Deriving OWL and RDF-S Ontologies 7

with OWL DL data without leaving the boundaries of OWL DL (which would be the
case if e.g. RDF-S meta-modeling was used).

3.1 Overview

The basic idea of our approach is as follows:
• We derive meaningful, generic ontology classes from the categories in the original

classification by narrowing them down to their meaning in one particular context.
• We define taxonomic concepts for the categories of the original schema so that

they form a consistent taxonomy when the edges in the schema are interpreted as a
subsumption hierarchy.

Our algorithm depends on a number of external functions.
• The function genS takes as input a categorization hierarchy and returns a formal

specification, as defined in Section 2.2. This function takes care of all the pre-
processing, disambiguating labels of categories, etc.

• The function getContextInfo takes as input a formal categorization and returns a
formal categorization which includes an interpretation for every category at every
context, except for possibly ccat.

• The function genURI takes as argument a context label and a category label and
returns a URI based on this information.

The input to the algorithm is some categorization and a set of contexts C. The
output of the algorithm is an RDF-S or OWL DLP ontology. There is a special
context ccat with lC(ccat) = “Category”. If this context is included in C, then the
algorithm will create special category classes in the output ontology for each of the
categories in the categorization.

Step 1: Pre-processing and creating a formal representation of the model

The input to this step is an arbitrary hierarchical categorization schema H. The
output is VC l,lJ,C,E,V,=S with V the set of categories, E such that

Evv1, ∈2 if there is an arc 2vv1, in the original categorization, C the set of
input contexts, and J is not defined for any context. S is obtained as follows: S =
genS(H).

Step 2: Deriving context information

This step defines the function J in S for each context Cc∈ with c≠ ccat . The
(external) algorithm finds an interpretation Sc(v) for each category Vv∈ . The output
is S' = genContextInfo(S), where J(c)(v) is defined for every VvC,c ∈∈ such that
c≠ ccat .

8 Martin Hepp and Jos de Bruijn

Step 3: Category context

If Cccat ∉ , proceed to the next step. Otherwise, choose S ccat as follows: (a) for

any Vv∈ , () ()vSvS catc ⊇ , (b) for all Vvv ∈21, such that Evv ∈21, ,

() ()21 vSvS catccatc ⊆ , and for every Vv∈ , ()vS catc
 is the smallest set such that

the conditions (a) and (b) hold. Obviously there is such a catcS .

Step 4: Generating the ontology

Start with an empty set G.

Step 4.1: Generating ontology classes
For each category Vv∈ and relevant context Cc∈ , add the triple

() ()() Class:rdfstype:rdf ,,vl,clgenURI VC (for an RDF-S ontology) or

() ()() Class:owltype:rdf ,,vl,clgenURI VC (for an OWL DLP ontology)

to G.

Step 4.2: Generating subclassOf relations

Since many categorization schemas that are so large that it is infeasible to determine

individually whether () ()b
c

a
c vSvS 21 ⊆ holds, we use the following

approximations for creating subclassOf relations:

If Cccat ∈ , then for any Vv,v ba ∈ , Evv ∈ba, , add the triple

() ()() () ()()b
V

cat
C

a
V

cat
C vl,clgenURI,,vl,clgenURI subClassOf:rdfs

to G, and for any catccCc ≠∈ , , Vv∈ , add the triple

() ()() () ()()vl,clgenURI,,vl,clgenURI V
cat

CVC subClassOf:rdfs

If for all Vvv ∈ba, such that Evv ∈ba, , catccCc ≠∈ , holds

() ()b
c

a
c vSvS ⊆ , add the triple

() ()() () ()()b
VC

a
VC vl,clgenURI,,vl,clgenURI subClassOf:rdfs

for any Vvv ∈ba, such that Evv ∈ba, .

As a simplification, we may use a representative sample and statistic inferencing to
determine whether the hierarchy would be a valid subsumption hierarchy for the
categories in this particular context. In other words, instead of manually checking this
property for the whole input schema, we draw a representative sample from the
categories in the original schema and determine manually whether for this set of
categories, the above mentionend conditions hold.

GenTax: A Generic Methodology for Deriving OWL and RDF-S Ontologies 9

The output of step 4 is the ontology G (apart from the ontology header etc.). Figure
1 illustrates this for an ontology that contains classes for one context c and the
category context ccat. In this example, the original hierarchy would not be a valid
subsumption hierarchy in the context c. If this was the case, there would be an
additional rdfs:subClassOf relation from Sc(v2) to Sc(v1).

rdfs:subClassOf

rdfs:subClassOfrdfs:subClassOf

rdf:type
instance 2

rdf:type
instance 1

()1vS catc

()2vS catc()1vS c

()2vS c

Figure 1. Example of the representation of two categories v1, v2 as four ontology classes

3.2 Implementation

Our algorithm depends, as said, on a number of external functions, which we explain
in this section.

3.2.1. Function genS
 This function takes as input a categorization hierarchy and returns a formal
specification, as defined in Section 2.2. In particular, it handles all pre-processing and
for disambiguating local labels. Local labels are such that are unique only in their
particular position in the hierarchy, e.g. “Portable” in the following example.

Computer Equipment
 !- Laser Printers
 !- Portable

One approach to handle such cases is by representing each node by a logical
formula that takes into account the label of the node and its position in the hierarchy,
as proposed by Giunchiglia, Marchese, and Zaihrayeu [9]. The simplest approach
(and often sufficient for our purpose) is to disambiguate local names by concatenating
the local name with the label of the path of parent nodes (with a suitable way of
escaping colons). This would turn the label “Portable” in our example into:
Computer Equipment: Laser Printers: Portable

Since most classifications that we found were very limited with regard to the depth
of branching, the growth in length created no problems.

A related anomaly is that of a varying semantics of the hierarchical relation by
depth of branching. In UNSPSC, for example, the last level of the hierarchy reflects
so called “Business Functions” for the next higher level:

Computer Equipment
 !- Laser Printers
 !- Sales
 !- Lease

10 Martin Hepp and Jos de Bruijn

We can handle this in the same way as local labels; however, this will usually
make it impossible to use the hierarchy as a subsumption hierarchy in this context,
since the lease of laser printers is not a subclass of laser printers etc.

3.2.2. Function getContextInfo
This function takes as input a formal categorization and returns a formal

categorization which includes an interpretation for every category at every context,
except for possibly ccat. Basically, this function returns what will be relevant instances
of the classes to be subsumed under the given label in the relevant contexts.

3.2.3. Function genURI
 This function takes as arguments a context label and a category label and returns a
URI based on this information. It will usually use a given base URI for the resulting
ontology and concatenate the category and context labels, possibly separated by a
slash. If any of the labels contains extra characters, the function will also rewrite them
so that the result is a valid URI. Since we have disambiguated local labels, we can
assume that the category labels are unique. In practice, we can often also assume the
category labels to be unique.
 As an example, the category “TV Set” in the two contexts “Product or Service”
and “Category” could be transformed into e.g.
http://www.foo.org/myontology/TV_Set_ProductOrService
http://www.foo.org/myontology/TV_Set_Category

3.3. Statistical Diagnosis of Conceptual Properties and Relevant Anomalies

Depending on the size of the schema and our knowledge of its properties, we may
not know a priori whether the categories in our selected context build a proper
subsumption hierarchy. Also, we might need to check for the anomalies outlined in
section 3.2, since they will require additional preprocessing.

We advocate the use of representative random samples and deductive statistics for
these diagnosis tasks.

When taking a random sample, we should include only such categories v that are
not top-level nodes. A nice property of this approach is that we can calibrate the test
depending on our needs and thus deal with the unavoidable trade-off decisions
between the value of an additional subsumption hierarchy vs. the risk of an
undetected inconsistency, which is naturally domain-dependent.

It should be stressed that it can be attractive to make such decisions for one context
as a whole, since only this allows for quick and cheap script-based creation of derived
ontologies without substantial human intervention and engineering effort.

3.4 Example

We want to built a products and services ontology based on a fictive hierarchical
schema for electronic-related categories, as shown in Fig. 2. In this case, the relevant
target context is “Products or Services”. We create two ontology classes for each
category, one reflecting the category concept (e.g. “Radio and TV (Category)”), and

GenTax: A Generic Methodology for Deriving OWL and RDF-S Ontologies 11

one reflecting respective types of electronic equipment (e.g. “Radio and TV (Product
or Service)”). We see that the original hierarchy is not a consistent subsumption
hierarchy in the context of products or services, since “TV Maintenance”, read as the
actual type of services, is not a subclass of “TV Set”, and “Radio Antenna” is not a
subclass of “Radio”. Thus, we arrange the category concepts in a subsumption
hierarchy that represents the original edges, but do not arrange the products and
services classes in such a hierarchy. All products and services classes are just
subclasses of the respective category concepts. Fig. 3 shows the resulting ontology.
Elipses represent ontology classes (rdfs:Class or owl:Class) and arrows
represent rdfs:subclassOf relations.

If our target context was “cost accounting branch”, then we could additionally
arrange the context-specific ontology classes in a subsumption hierarchy, since
invoices accounting for radio antennas are usually also regarded as invoices
accounting for radios.

TV
Maintenance

Radio and TV

TV Set

Color TVb/w TV

Radio

Portable
Radio

Radio
Antenna

Figure 2. Example of a hierarchical

categorization for electronics

TV Maintenance
(Product or Service)

Color TV
(Category)

b/w TV (Product
or Service)

Radio (Product
or Service)

Portable
Radio (Category)

Radio and TV
(Category)

Radio and TV
(Product or Service)

TV Set (Product
or Service)

TV Maintenance
(Category)

b/w TV
(Category)

Color TV
(Product or Service)

TV Set
(Category)

Radio
(Category)

Portable Radio
(Product or Service)

Radio Antenna
(Product or Service)

Radio Antenna
(Category)

Figure 3. The resulting ontology for the

context "Product or Service"

4. Evaluation: eClassOWL and unspscOWL

In order so evaluate our approach, we tried to derive useful e-business ontologies
in OWL-DLP from eCl@ss 5.1de [2] and UNSPSC [1]. Our goal was to generate,
with minimal human intervention, one eCl@ss ontology that can be used to annotate
products and services that are available on the Web, and another UNSPSC ontology
to be used for cost accounting purposes, i.e. aggregating incoming invoices by spend
categories. This exercise is also practically relevant, since the existing prototypes of
UNSPSC and eCl@ss ontologies are not very useful in these application domains as
has been detailed in [6]. Both categorization schemas contain more than 20,000
categories, which renders manual steps in the transformation infeasible.

We have implemented preliminary tooling support for our methodology. Our
prototype consists of a Java program that expects the informal categorization schema
to be stored in a RDBMS. The program accesses the categories via an ODBC link.
The reason why we use an RDBMS is that we needed nested queries. Also, it proved
to be handy to import the various source formats into the RDBMS using standard
tooling instead of developing proprietary import interfaces.

12 Martin Hepp and Jos de Bruijn

4.1. eCl@ss as a Products and Services Ontology

The eCl@ss standard is available at http://www.eclass.de in the form of separate
CSV files containing categories, properties, values, class-property recommendations,
property-value recommendations, and keywords. For evaluating our methodology, it
was sufficient to import the categories.

The application of our methodology to eCl@ss creates only minor problems. First,
the original hierarchy does not constitute a correct subsumption hierarchy if the
categories are interpreted as products and services categories. Fig. 4 gives an example
of how services of repairing assembly and maintenance technology are subnodes of
machine. Thus, the structure of the resulting ontology is as in the example in Fig. 3.

Figure 4. The eCl@ss hierarchy is no subsumption hierarchy in the context of

products and services

Second, the resulting ontology is very big: About 25,000 categories in the source
taxonomy result in more than 50,000 OWL classes. The size of the ontology imposes
unexpected problems when trying to use standard ontology editors (e.g. Protégé),
repositories/APIs (e.g. Jena 2), or validators (e.g. vowlidator). They all exit with error
messages when trying to process the full ontology. It was possible, though, to validate
and use a restricted version of the ontology that contains only a small subset of the
actual eCl@ss concepts. Also, we were able to load the full ontology into an OWLIM
[10] configuration.

As compared to our early approaches described in [6] and [7], our new approach
requires only two ontology classes instead of three per category, while the old
evaluation results still hold.

While we started our experiments with version 5.0 of eCl@ss, we were able to
generate new versions of our ontology based on new releases of eCl@ss in a fully
automated fashion. The only manual steps required were importing the new CSV files
into our RDBMS and updating the namespace for the new release. The total time for
creating the new ontology was less than two hours.

Generating ontologies in other ontology languages than OWL (e.g. WSML) was
also successful and just required expressing the OWL ontology patterns used in the
respective target ontology language.

4.2. UNSPSC as a Cost Accounting Ontology

UNSPSC [1] is similar to eCl@ss in its structure, but has more top-level categories
and is limited to the hierarchy of labels, while eCl@ss also includes properties and
other elements.

Same as eCl@ss, UNSPSC contains hierarchical relations that do not constitute a
correct subsumption hierarchy in some contexts, in particular when reading the labels

GenTax: A Generic Methodology for Deriving OWL and RDF-S Ontologies 13

in the literal sense. For example, we can find the following two candidate
inconsistencies:

a) Non-dairy creamers are neither coffee nor tea, and not even a true beverage.
-family-[50.20.00.00] Beverages

 -class-[50.20.17.00] Coffee and tea
 -commodity-[50.20.17.14] Non-dairy creamers

b) Ice is not a beverage.
-family-[50.20.00.00] Beverages

 -class-[50.20.23.00] Non-alcoholic beverages
 -commodity-[50.20.23.02] Ice

However, in this second example, the target context of our ontology is “Cost
Accounting Categories”. If we interpret the labels in this sense, then it is acceptable
for “Beverages” to subsume “Ice”, since anything spend on ice may be correctly
regarded as a beverage-related expenditure. Thus, other than in the example in section
4.1, the ontology classes in the target context “Cost Accounting Categories” can also
be arranged in a subsumption hierarchy, which reflects the original order. If we
wanted to create a products and services ontology from UNSPSC, the situation would
be the same as with eCl@ss, i.e. the classes in this context cannot be arranged in a
subsumption hierarchy.

We expect that running our script on other hierarchical categorization schemas, e.g.
eOTD or XBRL standard reporting taxonomies should require only slight
modifications in the embedded SQL.

5. Discussion

 There exists a substantial amount of publications on the analysis of the meaning of
taxonomic relationships, especially the fundamental work of [11]. This yielded the
insight that there are multiple types of taxonomic relationships, which should be
represented separately. In this paper, we have presented a generic methodology for
deriving consistent ontologies in a script-based fashion from hierarchical
categorization schemas, and successfully applied it to eCl@ss and UNSPSC. While
the resulting ontologies are rather lightweight, the cost/benefit ratio of our ontologies
seems very convincing, since the amount of human intervention is limited to
importing source data into an RDBMS and determining some parameters in a script.
Related work to ours can be classified into the following main groups:
• Methodologies for and experiences with the reuse of consensus in classifications,

thesauri, and taxonomies for the creation of ontologies. This is the most related
field of work. [12] discusses the transformation of tangled hierarchies, as e.g. such
derived from ambiguous “broader than / narrower than” taxonomies in library
science, into formal ontologies. [13] presents the experiences gained while
transforming the constructs of an existing semantic net in the medical domain into
an OWL ontology. [14] describe how machine learning approaches can be used to
integrate objects from taxonomies available on the Web into a consolidated master
taxonomy. [6] is a detailed description of creating products and services ontologies
based on UNSPSC and eCl@ss, but requires three classes per category and is also
not generically applicable. [15] shows the reuse and semantic enrichment of an

14 Martin Hepp and Jos de Bruijn

existing hierarchical standard, and demonstrates this for the Art and Architecture
Thesaurus (AAT). [16] and [8] are consequent works of this stream of research. An
important characteristic of [16] and [8] is that the authors leave the limits of OWL
DL in order to capture semantics contained in the original thesaurus, namely to be
able to treat classes as instances and vice versa. [9] presents a formal theory of
classifications; [17] is an extension of this work and proposes how lightweight
ontologies can be derived from such specifications.

• Prototypes of products and services ontologies in standard ontology languages
derived from UNSPSC. To our knowledge, there are currently two examples of
UNSPSC transformations into ontology representation languages: The
DAML+OIL and RDF-S variants created by [5] and the DAML+OIL variant from
the Knowledge Systems Laboratory at Stanford University [4]. For eCl@ss, there
exists one early prototype by Bizer and Wolk [18] and the official release of
eCl@ssOWL [19], which is based on our previous work [6].

• Ontology engineering methodologies, implicitly or explicitly focusing on the
manual creation of ontologies based on knowledge engineering principles. A
comprehensive discussion of all approaches in this field is beyond the scope of this
paper, for an overview see e.g. [20] and [21]. The main difference between our
work and traditional ontology engineering is that we advocate the script-based
transformation without involving an ontology engineer for revising the modeling in
every single case.

Our approach is different from previous work in that it allows for the script-based
creation of meaningful ontology classes (1) for a particular context while (2)
preserving the original hierarchy, even if the latter is not a real subsumption hierarchy
in this particular context. The resulting ontologies can be either RDF-S or OWL DLP;
in fact, they require no reasoning support beyond rdfs:subClassOf, which
allows for the use of lightweight, scalable reasoners, while still being able to merge an
OWL DLP variant with OWL DL data without leaving the boundaries of OWL DL
(which would be the case if e.g. RDF-S meta-modeling would be used).
 Our proposal comes not without cost. First, the resulting ontology provides quite
limited reasoning support. Second, we create at least two ontology classes per each
category, which increases the size of the ontology. However, the unwanted ontology
growth has to be set in relation to the low costs of reasoning and to fact that the
ontology building process requires almost no human labor.
 In general, we agree that a greater amount of e.g. axioms would be desirable. On
the other hand, we see no lightweight way of automatically adding more semantics
because it cannot be easily derived from the input schemas. Also, we will have to set
the resources necessary for the respective enrichment in relation to the gain in
automation and the resulting economies.

Acknowledgements: Parts of the work presented in this paper have been supported by the European
Commission under the projects DIP (FP6-507483), SUPER (FP6-026850), and MUSING (FP6-
027097), and by the Austrian BMVIT/FFG under the FIT-IT project myOntology (grant no.
812515/9284).

GenTax: A Generic Methodology for Deriving OWL and RDF-S Ontologies 15

References
[1] United Nations Development Programme, "United Nations Standard Products and Services

Code (UNSPSC)," available at http://www.unspsc.org/, retrieved March 15, 2007.
[2] eClass e.V., "eCl@ss: Standardized Material and Service Classification," available at

http://www.eclass-online.com/, retrieved March 15, 2007.
[3] M. Hepp, J. Leukel, and V. Schmitz, "A Quantitative Analysis of Product Categorization

Standards: Content, Coverage, and Maintenance of eCl@ss, UNSPSC, eOTD, and the
RosettaNet Technical Dictionary," Knowledge and Information Systems, (forthcoming).

[4] D. L. McGuinness, "UNSPSC Ontology in DAML+OIL," available at
http://www.ksl.stanford.edu/projects/DAML/UNSPSC.daml, retrieved March 15, 2007.

[5] M. Klein, "DAML+OIL and RDF Schema representation of UNSPSC," available at
http://www.cs.vu.nl/~mcaklein/unspsc/, retrieved March 15, 2007.

[6] M. Hepp, "Products and Services Ontologies: A Methodology for Deriving OWL Ontologies
from Industrial Categorization Standards," Int'l Journal on Semantic Web & Information
Systems (IJSWIS), vol. 2, pp. 72-99, 2006.

[7] M. Hepp, "Representing the Hierarchy of Industrial Taxonomies in OWL: The gen/tax
Approach," Proceedings of the ISWC Workshop Semantic Web Case Studies and Best
Practices for eBusiness (SWCASE05), Galway, Irland, 2005.

[8] M. van Assem, M. R. Menken, G. Schreiber, J. Wielemaker, and B. J. Wielinga, "A Method
for Converting Thesauri to RDF/OWL," Proceedings of the ISWC'04, Hiroshima, Japan, 2004.

[9] F. Giunchiglia, M. Marchese, and I. Zaihrayeu, "Towards a Theory of Formal Classification,"
Proceedings of the AAAI-05 Workshop on Contexts and Ontologies: Theory, Practice and
Applications (C&O-2005), Pittsburgh, Pennsylvania, USA, 2005.

[10] A. Kiryakov, D. Ognyanov, and D. Manov, "OWLIM – a Pragmatic Semantic Repository for
OWL," Proceedings of the International Workshop on Scalable Semantic Web Knowledge
Base Systems (SSWS 2005), New York City, USA, 2005.

[11] R. J. Brachman, "What IS-A Is and Isn't: An Analysis of Taxonomic Links in Semantic
Networks," IEEE Computer, vol. 16, pp. 30-36, 1983.

[12] A. L. Rector, C. Wroe, J. Rogers, and A. Roberts, "Untangling Taxonomies and Relationships:
Personal and Practical Problems in Loosely Coupled Development of Large Ontologies,"
Proceedings of the K-CAP'01, Victoria, British Columbia, Canada, 2001.

[13] V. Kashyap and A. Borgida, "Representing the UMLS Semantic Network using OWL,"
Proceedings of the 2nd International Semantic Web Conference 2003 (ISWC 2003), Sanibel
Island, Florida, USA, 2003.

[14] D. Zhang and W. S. Lee, "Learning to integrate web taxonomies," Journal of Web Semantics,
vol. 2, pp. 131-151, 2004.

[15] B. J. Wielinga, A. T. Schreiber, and J. A. C. Sandberg, "From Thesaurus to Ontology,"
Proceedings of the First International Conference on Knowledge Capture (K-CAP 2001),
Victoria, British Columbia, Canada, 2001.

[16] B. J. Wielinga, J. Wielemaker, G. Schreiber, and M. van Assem, "Methods for Porting
Resources to the Semantic Web," Proceedings of the First European Semantic Web
Symposium (ESWS'04), Heraklion, Greece, 2004.

[17] F. Giunchiglia, M. Marchese, and I. Zaihrayeu, "Encoding Classifications into Lightweight
Ontologies," Proceedings of the 3rd European Semantic Web Conference (ESWC 2006),
Budva, Montenegro, 2006.

[18] C. Bizer and J. Wolk, "RDF Version of the eClass 4.1 Product Classification Schema,"
available at http:////www.wiwiss.fu-berlin.de/suhl/bizer/ecommerce/eClass-4.1.rdf, retrieved
March 15, 2007.

[19] M. Hepp, "eCl@ssOWL. The Products and Services Ontology," available at
http://www.heppnetz.de/eclassowl/, retrieved March 15, 2007.

[20] M. Fernández-López and A. Gómez-Pérez, "Overview and analysis of methodologies for
building ontologies," The Knowledge Engineering Review, vol. 17, pp. 129-156, 2002.

[21] J. de Bruijn, "Using Ontologies. Enabling Knowledge Sharing and Reuse on the Semantic
Web," DERI Technical Report DERI-2003-10-29, October 2003, pp. 1-49, 2003.

