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Abstract.  Hierarchical classifications, thesauri, and informal taxonomies are 
likely the most valuable input for creating, at reasonable cost, non-toy 
ontologies in many domains. They contain, readily available, a wealth of 
category definitions plus a hierarchy, and they reflect some degree of 
community consensus. However, their transformation into useful ontologies is 
not as straightforward as it appears. In this paper, we show that (1) it often 
depends on the context of usage whether an informal hierarchical categorization 
schema is a classification, a thesaurus, or a taxonomy, and (2) present a novel 
methodology for automatically deriving consistent RDF-S and OWL ontologies 
from such schemas. Finally, we (3) demonstrate the usefulness of this approach 
by transforming the two e-business categorization standards eCl@ss and 
UNSPSC into ontologies that overcome the limitations of earlier prototypes. 
Our approach allows for the script-based creation of meaningful ontology 
classes for a particular context while preserving the original hierarchy, even if 
the latter is not a real subsumption hierarchy in this particular context. Human 
intervention in the transformation is limited to checking some conceptual 
properties and identifying frequent anomalies, and the only input required is an 
informal categorization plus a notion of the target context. In particular, the 
approach does not require instance data, as ontology learning approaches would 
usually do.  

Keywords. Ontology engineering, ontology learning, OWL, RDF-S, reuse, 
taxonomies, thesauri, classifications, UNSPSC, eCl@ss, e-business 

1. Introduction 

Hierarchical classification standards, thesauri, and such taxonomies that were not 
initially designed to be used as ontologies exist in many domains. They are likely the 
most promising sources for the creation of domain ontologies at reasonable costs, 
because they reflect some degree of community consensus and contain, readily 
available, a wealth of category definitions plus a hierarchy. For instance, UNSPSC 
[1], a standard categorization for products and services and often referred to as a 
products and services ontology for e-business, contains 20,789 categories (in version 
7,0901) and the similar but more expressive industrial standard eCl@ss [2] defines 
25,658 categories plus 5,525 precisely specified object and datatype properties (in 
version 5.1de).  The products classification in eBay, as an additional example, 
includes more than 2,000 categories for computer and networking equipment alone. 
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For a quantitative analysis of the content and domain coverage of such standards in 
the  products and services domain, see [3].   
While it is tempting to write simple scripts that mechanically create ontology classes 
for the categories in the source standard and rdfs:subclassOf relations for the 
edges constituting the hierarchy, as has been done by [4] and [5], this straightforward 
approach often yields ontologies that are of limited practical use, since it implies a 
particular interpretation of the categories so that the original hierarchical order is a 
valid subsumption hierarchy. If, for example, “ice” is a subcategory of “beverages” in 
the original hierarchy, this naïve transformation forces us to read the category 
“beverages” as something like “beverages and related stuff from a purchasing 
manager’s perspective”, because only then holds that all instances of the former class 
are also instances of the latter. While this choice is a valid transformation, it does 
often not yield the most useful ontologies, as has been shown in [6] and [7]. In 
particular, the ontology classes would not be sufficiently narrow to describe actual 
products or services instances in an unambiguous way. 

The main cause for this problem is that, due to the informal nature of the original 
schemas, the meanings of (1) the categories, (2) the hierarchical relations between 
them, and (3) the task of assigning an instance to a category are usually blurry, and 
the meanings of the three components are not clearly separated from each other. This 
means that such informal specifications entail multiple possible ontologies. For 
example, we can interpret the categories in a way so that the original hierarchy forms 
a consistent subsumption hierarchy and can be represented using 
rdfs:subClassOf, or we can interpret the categories in another way but must 
then use another transitive, binary relation of the kind “A is a subcategory of B in 
some context” in order to capture the hierarchy [6, 7]. 

Since most categorizations were not created under rigorous knowledge engineering 
methodologies, they often suffer from additional conceptual anomalies, e.g. local 
names or a varying semantics of the hierarchy relation by depth of branching. Such 
anomalies are sometimes found in only relatively small parts of the categorization 
schema. They may thus not become apparent by a quick view on a part of the 
specification. 

Besides these difficulties in understanding the original semantics and selecting a 
useful interpretation for a given application, we are additionally constrained by the 
expressiveness of popular ontology formalisms. OWL DL, for example, does not 
allow the definition of transitive relations between ontology classes, which may force 
us to invent suitable ontology modeling patterns as workarounds. 

Finally, it is highly desirable that the generation of derived ontologies is automated 
as much as possible, because of the high number of categories.   

1.1. Classification, Thesaurus, and Taxonomy 

The terms thesaurus and taxonomy are well established in ontology research. 
Basically, a thesaurus is a collection of concepts that are augmented by three types of 
relations: “broader term” (BT) and “narrower term” (NT), which may be read as a 
hierarchical order, and “related term” (RT), which is used to capture conceptual 
proximity [cf. e.g. 8]. An important characteristic of the NT/BT relation is that it is 
semantically less specific than a subclassOf relation used in ontology engineering for 
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building a subsumption hierarchy, since an instance that fits one subcategory of a 
thesaurus needs not to be an instance of a the respective parent category. For example, 
“ice cubes” may be a narrower term to “beverages”, but instances of the category “ice 
cube” are not instances of the category “beverage” if we read the categories literally.  

A taxonomy is different from a thesaurus in that it contains a subsumption 
hierarchy in the form of transitive subclassOf relations, i.e. each instance of a class 
can be assumed to be also an instance of all parent categories. It should be noted that 
hierarchical classifications are sometimes imprecisely referred to as taxonomies even 
though they do not include a real subsumption hierarchy. 

Classifications are sets of concepts and have been used for ages as a means of 
grouping entities by similarity. It is important to stress that the initial purpose of 
classification was not to capture the essence of things, i.e. modeling a part of the 
world, as in ontology engineering, but aggregating entities for some arbitrary purpose. 
Also, a hierarchical order is a frequent but not a mandatory property of classifications. 
Sometimes, classifications are assumed to be limited to hierarchical classifications, 
which are rooted trees where the semantics of the edges may vary widely depending 
on the purpose and context of usage [cf. 9].  

In this paper, we will subsume all three types, i.e. taxonomies, thesauri, and 
hierarchical classifications under the term hierarchical categorization schema, which 
all have in common that they include a set of categories and some form of a 
hierarchical order. There are two main reasons for this unified view on the three 
variants. First, it may depend of the context of usage whether a given collection is a 
taxonomy, a thesaurus, or just a hierarchical classification. Second, we want to 
provide an approach that can be directly applied to all three types, thus allowing us to 
reuse the wealth of any such schemas for building domain ontologies, which are 
urgently needed for making the Semantic Web a reality. 

1.2. Our Contribution 

In this paper, we  (1) show that it often depends on the context of usage whether an 
informal, hierarchical categorization schema is a classification, a thesaurus, or a 
taxonomy, (2) develop a novel methodology for mechanically deriving consistent, 
lightweight ontologies for a particular context from hierarchical classifications, 
thesauri, or taxonomies, even if they contain typical conceptual anomalies, (3) present 
suitable modeling patterns for RDF-S and OWL-DLP that require no reasoning 
support beyond rdfs:subClassOf, which allows for the use of the resulting 
ontologies with lightweight, scalable reasoners and repositories like OWLIM [10], 
and (4) demonstrate the usefulness of our approach by transforming the e-business 
categorization standards eCl@ss [2] and UNSPSC [1] into fully-fledged ontologies. 

We also propose to use deductive statistics for the diagnosis of common anomalies 
and for selecting modeling options when handling large categorization schemas. This 
allows us to quantify the likelihood that the resulting ontology is consistent without 
the need to evaluate the complete schema manually. 

The structure of the paper is as follows: In section 2, we present a unified model 
for hierarchical classifications schemas, thesauri, and taxonomies, which takes into 
account the role of contexts. In section 3, we present our methodology for deriving 
ontologies from hierarchical categorization schemas. In section 4, we show how our 
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approach can be successfully applied to the representation of eCl@ss and UNSPSC in 
RDF-S and OWL. In section 5, we discuss our findings and compare them to related 
works. 

2. A Uniform Model of Classifications, Thesauri, and Taxonomies 

In this section, we will present a unified formal model that fits any kind of 
hierarchical categorization schema, be it a domain classification, a thesaurus, or a 
taxonomy.  

2.1. Overview 

When taking the categories found in a hierarchical categorization schema as the 
basis for the creation of an ontology, we face two fundamental problems: First, the 
meaning of the categories may vary by context. With context we mean in here a 
domain of usage over which a category label is interpreted. Second, unless there is a 
formal definition of the semantics of the arcs constituting the hierarchy, the meaning 
of the category concepts is not determined independently of the meaning of that 
hierarchy relationship, i.e. both are tangled. For example, a category labeled “TV Set” 
can, depending on the context of usage, mean very different things, e.g. (1) any entity 
that is an actual TV set, (2) all TV sets and somewhat related items, (3) all invoices 
and cost statements that are related to TV sets, or (4) anything that can in any context 
be regarded as related to TV sets. 

In the original fields of usage, this blurriness constitutes no serious problems, since 
one usually never expresses that an entity is an instance of a particular category, but 
rather assigns entities to categories in well-defined contexts. Thus, incompatible 
meanings of the categories do usually not become apparent. Since a relation like 
rdf:type is never used, it is no problem that in catalog data exchange contexts, 
actual TV set makes and models are assigned to the UNSPSC category “TV Set”, 
while for spend analysis, invoices reflecting TV set and TV cabling purchases are put 
into the same category.  

One could easily be tempted to trace back these problems to a lack of 
understanding of the original context and assume that there was one correct 
interpretation of the semantics of the categories. However, this is not the case, since 
we can observe that the very same categorization schemas are used in very different 
contexts with varying interpretations. When we want to build useful ontologies, 
however, we need to be clear about the semantics of the resulting ontology classes, 
i.e. what it means to be an instance of this very class.  

Two examples might further illustrate this fundamental problem: The hierarchies 
of both UNSPSC and eCl@ss were created on the basis of practical aspects of 
procurement, treating those commodities that “somehow” belong to a specific 
category, as descendents of this closest category. This makes “ice” a subcategory of 
“non-alcoholic beverages” in UNSPSC and “docking stations” a subcategory of 
“computers” in eCl@ss. Now, there exists at least one context in which the hierarchy 
relation can be read as a taxonomic relation in the sense of “rdfs:subClassOf”, 
i.e. each instance of “ice” is also an instance of “non-alcoholic beverages” and each 
instance of “docking station” is also an instance of “computers”. Then, however, the 
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intension of the class “computers” is no longer any computer, but the concept 
“computer” from e.g. the perspective of cost accounting or spend analysis, where an 
incoming invoice for a docking station can be treated as an incoming invoice for a 
computer. Similarly will “non-alcoholic beverages” no longer represent all non-
alcoholic beverages, but the union of non-alcoholic beverages and related 
commodities.  

The negative consequence of interpreting the hierarchy as being equivalent to 
rdfs:subClassOf, is obvious: We can no longer use the resulting classes e.g. for 
buying processes, because a search for all instances of “computers” will also return 
docking stations, and ordering the cheapest available instance of non-alcoholic 
beverages will very likely return just ice cubes. One could argue that exactly this 
narrow definition of the classes is the original semantics of the categories. However, 
this is not true, since the plain text descriptions for these classes in UNSPSC and 
eCl@ss define the categories in the generic sense.  

In a nutshell, most hierarchical categorization schemas are used with varying 
semantics in multiple contexts, and depending on the respective context, the hierarchy 
relations may constitute a subsumption hierarchy or just “narrower then/broader then” 
relations. Our claim is that by restricting the interpretation of a categorization scheme 
to a particular context, we can derive more useful ontologies, even if that means that 
the hierarchical order of the original schema does not constitute a subsumption 
hierarchy in this particular context.  

2.2. Formal Definition 

We view a hierarchical categorization schema as a directed graph where nodes 
represent categories and edges represents the “narrower term” or “has subcategory” 
relation. Depending on the context, a set is related to each category. This set 
represents the items associated with the category in a particular context. 

Formally, a hierarchical categorization schema S is a 6-tuple 
CV l,lJ,C,E,V,=S with: 

• V a set of categories,  
• E a binary relation over V: VV:E ×  reflecting the original edges in the 

hierarchy, 
• C a set of contexts,  
• J a partial function which assigns to every context Cc∈  a partial function which 

assigns to every category Vv∈  a set of items such that J(c)(v) is the set of items 
associated with category v in context c,  

• lV a function which associates labels with categories: stringV:lV → , and 

• lC a function which associates labels with contexts: stringC:l C → . 

We can see from the definition that a category is interpreted differently depending on 
the context of usage. We say that the interpretation of a category Vv∈  in a context 

Cc∈ , denoted ( )vS c , is the set ( ) ( )( )vcJ=vS c . The interpretation of a 
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category Vv∈ , denoted S(v) is the union of the interpretations of v at every context 
in C: ( ) ( ){ }Cc|vS=vS c ∈∪ . 
 Using the formal model, we can specify a number of properties which a 
categorization schema may have. First of all, it is not clear whether a particular 
hierarchical classification is a consistent taxonomy or rather a thesaurus. 

We would call a classification S a taxonomy, if the hierarchy is a valid 
subsumption hierarchy, i.e., for all pairs of concepts va, vb holds that if va is a 
descendant of vb then va is also a subclass of vb. Formally,  S is a taxonomy if, and 
only if, for all Vv,v ba ∈  holds: 

( ) ( )baab vSvSthenEv,vif ⊆∈ . 
We call S a taxonomy with respect to context c if the interpretations of all 

categories in context c form a valid subsumption hierarchy. Formally, S is a taxonomy 
with respect to a context Cc∈  if, and only if, for all Vv,v ba ∈  holds: 

( ) ( )b
c

a
c

ab vSvSthenEv,vif ⊆∈  
Several of the hierarchical classification schemas we looked at are taxonomies only 
for some contexts. 
 We say a categorization is cyclic if there is a Vv∈  such that ( )Etrvv, ∈ with 
tr(E) the transitive closure of E. For the remainder of this paper, we assume the input 
categorization not to be cyclic. 

3. Deriving OWL and RDF-S Ontologies from Hierarchical 
Categorization Schemas 

In this section, we describe a novel approach of deriving consistent OWL and RDF-S 
ontologies from hierarchical categorization schemas. Our approach allows for the 
semi-automatic creation of meaningful ontology classes for a particular context while 
preserving the original hierarchy, even if the latter is not a consistent subsumption 
hierarchy in this particular context. The basic idea of our GenTax methodology is to 
derive two ontology classes from each category: one generic concept in a given 
context and one broader taxonomic concept which allows preserving the original 
hierarchy.  

The input required is minimal and limited to (1) an informal specification of a 
hierarchical categorization schema as defined in section 2.2 and (2) a notion of the 
context in which the ontology should be used. In particular, we do not need instance 
data or any additional information, as most ontology learning approaches usually 
would. The transformation itself is semi-automatic in the sense that human 
intervention is limited to checking some conceptual properties and identifying 
frequent anomalies. In other words, the actual generation of the ontology can be done 
by a script that only needs to be configured properly by a human. 

The resulting ontologies can be either RDF-S or OWL DLP; in fact, they require 
no reasoning support beyond rdfs:subClassOf, which allows for the use of 
lightweight, scalable reasoners, while still being able to merge an OWL DLP variant 
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with OWL DL data without leaving the boundaries of OWL DL (which would be the 
case if e.g. RDF-S meta-modeling was used).  

3.1 Overview 

The basic idea of our approach is as follows: 
• We derive meaningful, generic ontology classes from the categories in the original 

classification by narrowing them down to their meaning in one particular context.  
• We define taxonomic concepts for the categories of the original schema so that 

they form a consistent taxonomy when the edges in the schema are interpreted as a 
subsumption hierarchy.  
 

Our algorithm depends on a number of external functions.  
• The function genS takes as input a categorization hierarchy and returns a formal 

specification, as defined in Section 2.2. This function takes care of all the pre-
processing, disambiguating labels of categories, etc. 

• The function getContextInfo takes as input a formal categorization and returns a 
formal categorization which includes an interpretation for every category at every 
context, except for possibly ccat. 

• The function genURI takes as argument a context label and a category label and 
returns a URI based on this information. 

The input to the algorithm is some categorization and a set of contexts C. The 
output of the algorithm is an RDF-S or OWL DLP ontology. There is a special 
context ccat with lC(ccat) = “Category”. If this context is included in C, then the 
algorithm will create special category classes in the output ontology for each of the 
categories in the categorization. 

Step 1: Pre-processing and creating a formal representation of the model  

The input to this step is an arbitrary hierarchical categorization schema H. The 
output is VC l,lJ,C,E,V,=S  with V the set of categories, E such that 

Evv1, ∈2  if there is an arc 2vv1,  in the original categorization, C the set of 
input contexts, and J is not defined for any context. S is obtained as follows: S = 
genS(H). 

Step 2: Deriving context information 

This step defines the function J in S for each context Cc∈  with c≠ ccat . The 
(external) algorithm finds an interpretation Sc(v) for each category Vv∈ . The output 
is S' = genContextInfo(S), where J(c)(v) is defined for every VvC,c ∈∈  such that 
c≠ ccat . 
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Step 3: Category context 

If Cccat ∉ , proceed to the next step. Otherwise, choose S ccat  as follows: (a) for 

any Vv∈ ,  ( ) ( )vSvS catc ⊇ , (b) for all Vvv ∈21,  such that  Evv ∈21, , 

( ) ( )21 vSvS catccatc ⊆ , and for every Vv∈ , ( )vS catc
 is the smallest set such that 

the conditions (a) and (b) hold. Obviously there is such a catcS . 

Step 4: Generating the ontology 

Start with an empty set G.  

Step 4.1: Generating ontology classes 
For each category Vv∈  and relevant context Cc∈ , add the  triple  

( ) ( )( ) Class:rdfstype:rdf ,,vl,clgenURI VC  (for an RDF-S ontology) or 

( ) ( )( ) Class:owltype:rdf ,,vl,clgenURI VC  (for an OWL DLP ontology) 

to G. 

Step 4.2: Generating subclassOf relations 
 

Since many categorization schemas that are so large that it is infeasible to determine 

individually whether  ( ) ( )b
c

a
c vSvS 21 ⊆  holds, we use the following 

approximations for creating subclassOf relations: 

If Cccat ∈ , then for any Vv,v ba ∈ ,  Evv ∈ba, , add the triple  

( ) ( )( ) ( ) ( )( )b
V

cat
C

a
V

cat
C vl,clgenURI,,vl,clgenURI subClassOf:rdfs  

to G, and for any catccCc ≠∈ , , Vv∈ , add the triple 

( ) ( )( ) ( ) ( )( )vl,clgenURI,,vl,clgenURI V
cat

CVC subClassOf:rdfs  

If for all Vvv ∈ba, such that Evv ∈ba, , catccCc ≠∈ , holds  

( ) ( )b
c

a
c vSvS ⊆ , add the triple 

( ) ( )( ) ( ) ( )( )b
VC

a
VC vl,clgenURI,,vl,clgenURI subClassOf:rdfs  

for any Vvv ∈ba, such that Evv ∈ba, .  

As a simplification, we may use a representative sample and statistic inferencing to 
determine whether the hierarchy would be a valid subsumption hierarchy for the 
categories in this particular context. In other words, instead of manually checking this 
property for the whole input schema, we draw a representative sample from the 
categories in the original schema and determine manually whether for this set of 
categories, the above mentionend conditions hold.  
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The output of step 4 is the ontology G (apart from the ontology header etc.). Figure 
1 illustrates this for an ontology that contains classes for one context c and the 
category context ccat. In this example, the original hierarchy would not be a valid 
subsumption hierarchy in the context c. If this was the case, there would be an 
additional rdfs:subClassOf relation from Sc(v2) to Sc(v1). 

 

rdfs:subClassOf

rdfs:subClassOfrdfs:subClassOf

rdf:type
instance 2

rdf:type
instance 1

( )1vS catc

( )2vS catc( )1vS c

( )2vS c

 
Figure 1. Example of the representation of two categories v1, v2 as four ontology classes 

3.2 Implementation 

Our algorithm depends, as said, on a number of external functions, which we explain 
in this section.  

3.2.1. Function genS  
 This function takes as input a categorization hierarchy and returns a formal 
specification, as defined in Section 2.2. In particular, it handles all pre-processing and 
for disambiguating local labels. Local labels are such that are unique only in their 
particular position in the hierarchy, e.g. “Portable” in the following example. 

Computer Equipment 
   !- Laser Printers 
         !- Portable 

One approach to handle such cases is by representing each node by a logical 
formula that takes into account the label of the node and its position in the hierarchy, 
as proposed by Giunchiglia, Marchese, and Zaihrayeu [9]. The simplest approach 
(and often sufficient for our purpose) is to disambiguate local names by concatenating 
the local name with the label of the path of parent nodes (with a suitable way of 
escaping colons).  This would turn the label “Portable” in our example into:  
Computer Equipment: Laser Printers: Portable 

Since most classifications that we found were very limited with regard to the depth 
of branching, the growth in length created no problems. 

A related anomaly is that of a varying semantics of the hierarchical relation by 
depth of branching. In UNSPSC, for example, the last level of the hierarchy reflects 
so called “Business Functions” for the next higher level: 

Computer Equipment 
   !- Laser Printers 
        !- Sales 
  !- Lease   
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We can handle this in the same way as local labels; however, this will usually 
make it impossible to use the hierarchy as a subsumption hierarchy in this context, 
since the lease of laser printers is not a subclass of laser printers etc.  

3.2.2. Function getContextInfo  
This function takes as input a formal categorization and returns a formal 

categorization which includes an interpretation for every category at every context, 
except for possibly ccat. Basically, this function returns what will be relevant instances 
of the classes to be subsumed under the given label in the relevant contexts. 

3.2.3. Function genURI 
 This function takes as arguments a context label and a category label and returns a 
URI based on this information. It will usually use a given base URI for the resulting 
ontology and concatenate the category and context labels, possibly separated by a 
slash. If any of the labels contains extra characters, the function will also rewrite them 
so that the result is a valid URI. Since we have disambiguated local labels, we can 
assume that the category labels are unique. In practice, we can often also assume the 
category labels to be unique. 
 As an example, the category “TV Set” in the two contexts “Product or Service” 
and “Category” could be transformed into e.g. 
http://www.foo.org/myontology/TV_Set_ProductOrService 
http://www.foo.org/myontology/TV_Set_Category 

3.3. Statistical Diagnosis of Conceptual Properties and Relevant Anomalies 

Depending on the size of the schema and our knowledge of its properties, we may 
not know a priori whether the categories in our selected context build a proper 
subsumption hierarchy. Also, we might need to check for the anomalies outlined in 
section 3.2, since they will require additional preprocessing. 

We advocate the use of representative random samples and deductive statistics for 
these diagnosis tasks.  

When taking a random sample, we should include only such categories v that are 
not top-level nodes. A nice property of this approach is that we can calibrate the test 
depending on our needs and thus deal with the unavoidable trade-off decisions 
between the value of an additional subsumption hierarchy vs. the risk of an 
undetected inconsistency, which is naturally domain-dependent. 

It should be stressed that it can be attractive to make such decisions for one context 
as a whole, since only this allows for quick and cheap script-based creation of derived 
ontologies without substantial human intervention and engineering effort.   

3.4 Example 

We want to built a products and services ontology based on a fictive hierarchical 
schema for electronic-related categories, as shown in Fig. 2. In this case, the relevant 
target context is “Products or Services”. We create two ontology classes for each 
category, one reflecting the category concept (e.g. “Radio and TV (Category)”), and 
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one reflecting respective types of electronic equipment (e.g. “Radio and TV (Product 
or Service)”). We see that the original hierarchy is not a consistent subsumption 
hierarchy in the context of products or services, since “TV Maintenance”, read as the 
actual type of services, is not a subclass of “TV Set”, and “Radio Antenna” is not a 
subclass of “Radio”. Thus, we arrange the category concepts in a subsumption 
hierarchy that represents the original edges, but do not arrange the products and 
services classes in such a hierarchy. All products and services classes are just 
subclasses of the respective category concepts. Fig. 3 shows the resulting ontology. 
Elipses represent ontology classes (rdfs:Class or owl:Class) and arrows 
represent rdfs:subclassOf relations. 

If our target context was “cost accounting branch”, then we could additionally 
arrange the context-specific ontology classes in a subsumption hierarchy, since 
invoices accounting for radio antennas are usually also regarded as invoices 
accounting for radios. 

 

TV 
Maintenance

Radio and TV

TV Set

Color TVb/w TV

Radio

Portable
Radio

Radio 
Antenna

 
Figure 2. Example of a hierarchical 

categorization for electronics 

TV Maintenance 
(Product or Service)

Color TV 
(Category)

b/w TV (Product
or Service)

Radio (Product 
or Service)

Portable
Radio (Category)

Radio and TV 
(Category)

Radio and TV 
(Product or Service)

TV Set (Product 
or Service)

TV Maintenance 
(Category)

b/w TV 
(Category)

Color TV 
(Product or Service)

TV Set
(Category)

Radio
(Category)

Portable Radio 
(Product or Service)

Radio Antenna 
(Product or Service)

Radio Antenna 
(Category)

 
Figure 3. The resulting ontology for the 

context "Product or Service" 

4. Evaluation: eClassOWL and unspscOWL 

In order so evaluate our approach, we tried to derive useful e-business ontologies 
in OWL-DLP from eCl@ss 5.1de [2] and UNSPSC [1]. Our goal was to generate, 
with minimal human intervention, one eCl@ss ontology that can be used to annotate 
products and services that are available on the Web, and another UNSPSC ontology 
to be used for cost accounting purposes, i.e. aggregating incoming invoices by spend 
categories. This exercise is also practically relevant, since the existing prototypes of 
UNSPSC and eCl@ss ontologies are not very useful in these application domains as 
has been detailed in [6]. Both categorization schemas contain more than 20,000 
categories, which renders manual steps in the transformation infeasible. 

We have implemented preliminary tooling support for our methodology. Our 
prototype consists of a Java program that expects the informal categorization schema 
to be stored in a RDBMS. The program accesses the categories via an ODBC link. 
The reason why we use an RDBMS is that we needed nested queries. Also, it proved 
to be handy to import the various source formats into the RDBMS using standard 
tooling instead of developing proprietary import interfaces. 
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4.1. eCl@ss as a Products and Services Ontology 

The eCl@ss standard is available at http://www.eclass.de in the form of separate 
CSV files containing categories, properties, values, class-property recommendations, 
property-value recommendations, and keywords. For evaluating our methodology, it 
was sufficient to import the categories.  

The application of our methodology to eCl@ss creates only minor problems. First, 
the original hierarchy does not constitute a correct subsumption hierarchy if the 
categories are interpreted as products and services categories. Fig. 4 gives an example 
of how services of repairing assembly and maintenance technology are subnodes of 
machine. Thus, the structure of the resulting ontology is as in the example in Fig. 3. 

 

 
Figure 4. The eCl@ss hierarchy is no subsumption hierarchy in the context of 

products and services 

Second, the resulting ontology is very big: About 25,000 categories in the source 
taxonomy result in more than 50,000 OWL classes. The size of the ontology imposes 
unexpected problems when trying to use standard ontology editors (e.g. Protégé), 
repositories/APIs (e.g. Jena 2), or validators (e.g. vowlidator). They all exit with error 
messages when trying to process the full ontology. It was possible, though, to validate 
and use a restricted version of the ontology that contains only a small subset of the 
actual eCl@ss concepts. Also, we were able to load the full ontology into an OWLIM 
[10] configuration. 

As compared to our early approaches described in [6] and [7], our new approach 
requires only two ontology classes instead of three per category, while the old 
evaluation results still hold. 

While we started our experiments with version 5.0 of eCl@ss, we were able to 
generate new versions of our ontology based on new releases of eCl@ss in a fully 
automated fashion. The only manual steps required were importing the new CSV files 
into our RDBMS and updating the namespace for the new release. The total time for 
creating the new ontology was less than two hours.  

Generating ontologies in other ontology languages than OWL (e.g. WSML) was 
also successful and just required expressing the OWL ontology patterns used in the 
respective target ontology language. 

4.2. UNSPSC as a Cost Accounting Ontology 

UNSPSC [1] is similar to eCl@ss in its structure, but has more top-level categories 
and is limited to the hierarchy of labels, while eCl@ss also includes properties and 
other elements. 

Same as eCl@ss, UNSPSC contains hierarchical relations that do not constitute a 
correct subsumption hierarchy in some contexts, in particular when reading the labels 
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in the literal sense. For example, we can find the following two candidate 
inconsistencies: 

a) Non-dairy creamers are neither coffee nor tea, and not even a true beverage.  
-family-[50.20.00.00] Beverages     

 -class-[50.20.17.00] Coffee and tea         
  -commodity-[50.20.17.14] Non-dairy creamers   

b) Ice is not a beverage. 
-family-[50.20.00.00] Beverages      

 -class-[50.20.23.00] Non-alcoholic beverages           
  -commodity-[50.20.23.02] Ice  

However, in this second example, the target context of our ontology is “Cost 
Accounting Categories”. If we interpret the labels in this sense, then it is acceptable 
for “Beverages” to subsume “Ice”, since anything spend on ice may be correctly 
regarded as a beverage-related expenditure. Thus, other than in the example in section 
4.1, the ontology classes in the target context “Cost Accounting Categories” can also 
be arranged in a subsumption hierarchy, which reflects the original order. If we 
wanted to create a products and services ontology from UNSPSC, the situation would 
be the same as with eCl@ss, i.e. the classes in this context cannot be arranged in a 
subsumption hierarchy. 

We expect that running our script on other hierarchical categorization schemas, e.g. 
eOTD or XBRL standard reporting taxonomies should require only slight 
modifications in the embedded SQL. 

5. Discussion 

 There exists a substantial amount of publications on the analysis of the meaning of 
taxonomic relationships, especially the fundamental work of [11]. This yielded the 
insight that there are multiple types of taxonomic relationships, which should be 
represented separately. In this paper, we have presented a generic methodology for 
deriving consistent ontologies in a script-based fashion from hierarchical 
categorization schemas, and successfully applied it to eCl@ss and UNSPSC. While 
the resulting ontologies are rather lightweight, the cost/benefit ratio of our ontologies 
seems very convincing, since the amount of human intervention is limited to 
importing source data into an RDBMS and determining some parameters in a script. 
Related work to ours can be classified into the following main groups: 
• Methodologies for and experiences with the reuse of consensus in classifications, 

thesauri, and taxonomies for the creation of ontologies. This is the most related 
field of work. [12] discusses the transformation of tangled hierarchies, as e.g. such 
derived from ambiguous “broader than / narrower than” taxonomies in library 
science, into formal ontologies. [13] presents the experiences gained while 
transforming the constructs of an existing semantic net in the medical domain into 
an OWL ontology. [14] describe how machine learning approaches can be used to 
integrate objects from taxonomies available on the Web into a consolidated master 
taxonomy. [6] is a detailed description of creating products and services ontologies 
based on UNSPSC and eCl@ss, but requires three classes per category and is also 
not generically applicable. [15] shows the reuse and semantic enrichment of an 
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existing hierarchical standard, and demonstrates this for the Art and Architecture 
Thesaurus (AAT). [16] and [8] are consequent works of this stream of research. An 
important characteristic of [16] and [8] is that the authors leave the limits of OWL 
DL in order to capture semantics contained in the original thesaurus, namely to be 
able to treat classes as instances and vice versa. [9] presents a formal theory of 
classifications; [17] is an extension of this work and proposes how lightweight 
ontologies can be derived from such specifications. 

• Prototypes of products and services ontologies in standard ontology languages 
derived from UNSPSC. To our knowledge, there are currently two examples of 
UNSPSC transformations into ontology representation languages: The 
DAML+OIL and RDF-S variants created by [5] and the DAML+OIL variant from 
the Knowledge Systems Laboratory at Stanford University [4]. For eCl@ss, there 
exists one early prototype by Bizer and Wolk [18] and the official release of 
eCl@ssOWL [19], which is based on our previous work [6]. 

• Ontology engineering methodologies, implicitly or explicitly focusing on the 
manual creation of ontologies based on knowledge engineering principles. A 
comprehensive discussion of all approaches in this field is beyond the scope of this 
paper, for an overview see e.g. [20] and [21]. The main difference between our 
work and traditional ontology engineering is that we advocate the script-based 
transformation without involving an ontology engineer for revising the modeling in 
every single case. 

 
Our approach is different from previous work in that it allows for the script-based 
creation of meaningful ontology classes (1) for a particular context while (2) 
preserving the original hierarchy, even if the latter is not a real subsumption hierarchy 
in this particular context. The resulting ontologies can be either RDF-S or OWL DLP; 
in fact, they require no reasoning support beyond rdfs:subClassOf, which 
allows for the use of lightweight, scalable reasoners, while still being able to merge an 
OWL DLP variant with OWL DL data without leaving the boundaries of OWL DL 
(which would be the case if e.g. RDF-S meta-modeling would be used).  
 Our proposal comes not without cost. First, the resulting ontology provides quite 
limited reasoning support. Second, we create at least two ontology classes per each 
category, which increases the size of the ontology. However, the unwanted ontology 
growth has to be set in relation to the low costs of reasoning and to fact that the 
ontology building process requires almost no human labor. 
 In general, we agree that a greater amount of e.g. axioms would be desirable. On 
the other hand, we see no lightweight way of automatically adding more semantics 
because it cannot be easily derived from the input schemas. Also, we will have to set 
the resources necessary for the respective enrichment in relation to the gain in 
automation and the resulting economies.  
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