
GR4PHP: A Programming API for Consuming
E-Commerce Data from the Semantic Web

Alex Stolz, Mouzhi Ge and Martin Hepp

E-Business and Web Science Research Group, Universität der Bundeswehr München
Werner-Heisenberg-Weg 39, D-85579 Neubiberg, Germany

{alex.stolz,mouzhi.ge,martin.hepp}@ebusiness-unibw.org

Abstract. Nowadays, large data collections are made available on-line
for free. The liberalized data is predominantly accessed via Web services.
The interaction with such Web services is facilitated by RESTful Web
APIs and programming libraries that provide a convenient means for
Web developers to build intelligent applications and mash-ups. However,
for typical Web developers it is still hard to include the growing amount
of e-commerce data on the Semantic Web in applications. Fetching use-
ful data from public SPARQL endpoints requires substantial expertise,
such as regarding the popularity of competing RDF modeling patterns,
data cleansing heuristics, etc. In this paper, we propose an architecture
and implementation of a PHP library for consuming e-commerce data
in RDF expressed in terms of the GoodRelations vocabulary. Our ap-
proach (1) provides an efficient way of fetching information about stores,
offers, product models, and opening hours from a SPARQL endpoint,
and (2) hides the complexity of SPARQL and GoodRelations modeling
patterns. We show that our approach significantly reduces the amount
of time for a respective implementation. Furthermore, our approach has
been applied successfully in a real-world application.

1 Introduction

Past research in the Semantic Web community has proposed numerous frame-
works, best practices and prototypes to facilitate the development and publish-
ing of rich content descriptions. In particular, many recent efforts deal with the
proper publication and deployment of RDF data [3]. At the same moment, how-
ever, the shortage of developer-friendly programming libraries for querying the
Semantic Web limits the consumption of semantic data, notably in the field of
e-commerce.

The Semantic Web aims at creating meaningful links between resources on
the Web yielding to a Web of Data processable by machines [2]. An essential
building block of the Semantic Web is the Resource Description Framework
(RDF), a standardized data model for representing information about resources
on the Web [12]. In contrast to classical relational databases, the distributed
RDF data model allows for more sophisticated and intelligent tools. For in-
stance, the first among four Linked Data principles [3] addresses the use of

globally unique resource identifiers (URIs), which paves the way for better data
integration at global scope. Furthermore, compared to relational databases with
rigid schemata, resources on the Semantic Web are integrated more easily across
different vocabularies. However, the gain in flexibility implies rising complexity:
SPARQL [13] for example, a protocol and powerful query language for RDF,
adds complexity because of the diversity of schemata that exist on the Web of
Data. Consequently, for most Web developers it proves difficult to take advan-
tage of content available on the Semantic Web. In particular, it would require
them to become familiar with (1) the underlying model of the domain of interest,
along with other complementing vocabularies, and (2) the syntax and seman-
tics of a Semantic Web query language, i.e. SPARQL. Although approaches like
Semantic Web programming frameworks can provide high-level assistance for
developers in consuming structured data, they mostly disregard the domain per-
spective, e.g. in order to query product data it still requires detailed knowledge
about vocabulary patterns in e-commerce. In parallel, the amount of data on the
Semantic Web is subject to constant growth which is augmenting the potential
benefit for Web application developers. Thus, a solution to overcome the com-
plexity problem of the SPARQL query language with regard to Web development
is needed.

The barrier of Semantic Web data consumption can be reduced for Web de-
velopers if a respective technology taps into recent Web standards, thereby elim-
inating learning efforts, because developers usually commit themselves to well-
established technologies that feature proper documentation, community support,
reference implementations, etc. Current trends in Web technology involve Web
APIs (Application Programming Interfaces) and programming libraries. Web
APIs constitute tools that take advantage of single Web services or mash-ups
built on disparate Web services. The popularity of Web APIs is mainly due to the
success of the light-weight REpresentational State Transfer (REST) paradigm
[6, Chapter 5]. Compared to Web APIs, programming libraries (or programming
APIs, software APIs) introduce an additional, language-specific abstraction layer
that makes implementation in a particular programming language more conve-
nient for Web developers. To our knowledge, there exist no programming libraries
so far that focus on mapping between SPARQL queries and language-specific
data types within the context of a specific ontology.

In this paper, we adopt from latest Web technology trends and describe the
architecture and implementation of a developer-friendly programming library to
fetch information about stores, offers, product models, and opening hours from
a SPARQL-capable RDF store that contains e-commerce data. In particular,
(1) we present a powerful PHP library, which empowers PHP developers with the
ability to query GoodRelations [9] data from the Semantic Web. Secondly, (2) our
approach aims to hide the complexity of the Semantic Web from PHP developers,
i.e. programmers will not be confronted with details such as RDF, SPARQL, or
GoodRelations, which to learn would substantially constrain their productivity.
Moreover, our solution comprises manual query optimizations which requires
advanced knowledge about design decisions of the underlying SPARQL engine.

The rest of this paper is organized as follows: Section 2 provides background
information and reviews previous efforts to circumvent formulating SPARQL
queries; Section 3 covers aspects of the programming API including the descrip-
tion of the functions supported, the architecture, implementation details and a
demonstration; Section 4 outlines our evaluation methodology and details results
and conclusions of our experiments; finally, Section 5 summarizes our work.

2 Background and Related Work

In the following, we discuss previous work for facilitating RDF consumption by
use of the SPARQL query language. After that, we introduce GoodRelations,
a vocabulary for describing e-commerce data on the Semantic Web that our
approach relies on.

2.1 Review of Approaches to Facilitate SPARQL Usage

From a review of existing tools and publications we classified three general ap-
proaches to alleviate the complexity of formulating SPARQL queries:

NLP and Question Answering. Many question answering approaches on the Se-
mantic Web translate natural language queries into SPARQL, which is likely the
most intuitive way to allow ordinary users to do complex queries. A usability
study summarizes four natural language interfaces for the Semantic Web that
map natural language input to SPARQL queries [10]. The authors in [14] suggest
a question answering approach over Linked Data that generates a SPARQL tem-
plate according to the semantic structure of the natural language question and
populates it with URIs obtained using similarity ranks. [15] propose a frame-
work to translate natural language questions into SPARQL queries to answer
questions over structured knowledge bases. [1,7] describe similar approaches for
question answering in health-care and in video search.

Query Builders and Query Assistance. [4] propose a graph summary approach
to assist users in formulating complex SPARQL queries over heterogeneous data
sources with diverse data structures and vocabularies. Query builders represent
an alternative approach to circumvent the manual crafting of SPARQL queries.
For example, Openlink iSPARQL1 provides an advanced graphical query builder
that abstracts from the details of the SPARQL syntax. In literature, [11] pro-
posed a graphical user interface over biomedical linked open data repositories to
assist users in building SPARQL queries without having to know the underlying
data structures. Drupal, a semantically enhanced content management system,
implements a query builder module for SPARQL to integrate semantic content
results into Web pages [5].

1 http://wikis.openlinksw.com/owiki/OATWikiWeb/InteractiveSparqlQueryBuil
derOverview

http://wikis.openlinksw.com/owiki/OATWikiWeb/InteractiveSparqlQueryBuilderOverview
http://wikis.openlinksw.com/owiki/OATWikiWeb/InteractiveSparqlQueryBuilderOverview

Programming Frameworks. Many frameworks and software libraries for the Se-
mantic Web incorporate rudimentary query capabilities. However, most popular
frameworks require users to provide raw SPARQL queries (e.g. Apache Jena,
ARC2, RDFLib). Some frameworks or respective wrappers feature programmatic
means to construct SPARQL queries, for instance SuRF for Python/RDFLib,
or ActiveRDF for Ruby on Rails.

In contrast to related works, our approach equips PHP Web developers with
a precise query mechanism to fetch e-commerce data from SPARQL endpoints,
without having to become familiar with the details of the domain model or any
other Semantic Web technologies. In our paper, we provide a uniform mechanism
to access information from heterogeneous data sources (by virtue of SPARQL),
paired with the comfortability of accessing them with a popular high-level pro-
gramming library.

2.2 GoodRelations Ontology

Our research is based on GoodRelations. GoodRelations2 [9] is a light-weight
vocabulary (or ontology, schema, data dictionary) for e-commerce on the Se-
mantic Web. Its expressivity is targeted at the description of the actual offer
of a good and its related entities, i.e. the description of relationships between
business entity, offer, and product or service. The ontology provides basic sup-
port for the most frequently used properties and individuals in offering descrip-
tions such as product details (e.g. product name, product description, European
article number, manufacturer), prices, and terms and conditions. Moreover, it
permits to specify legal entities together with their corresponding points of sale,
frequently complemented with other vocabularies such as vCard, Friend-of-a-
Friend (FOAF), and WGS 84, to specify address details, geo location data and
other relevant meta-data, e.g. links to Web pages.

3 Approach for Consuming Semantic E-Commerce Data

In this section, we propose the programming library (GR4PHP) to consume
GoodRelations data from SPARQL endpoints. First, a high-level view is pro-
vided by describing the available API methods. Then, the system architecture
is introduced, followed by an explanation of the interplay between the different
components of the architecture. After that, the interface of the programming
API is discussed in more detail. Furthermore, the steps involved in automati-
cally building up the query that is sent to the endpoint are outlined. Finally, the
usage of the programming library is demonstrated on a working example.

3.1 PHP Library for Consuming GoodRelations

Despite the dependencies on GoodRelations and SPARQL, the programming
library requires neither modeling nor SPARQL skills to use it.

2 http://purl.org/goodrelations/

http://purl.org/goodrelations/

The PHP API provides six abstract functions, namely getCompany, getOf-
fers, getProductModel, getStore, getLocation, and getOpeningHours. The func-
tions constitute a PHP-friendly way to query the most recurring data patterns
within the GoodRelations domain. Search criteria supplied by developers along
with the function names are internally translated into proper SPARQL queries
(cf. Section 3.4). Table 1 lists the PHP functions (method signatures will be
specified in Section 3.3) together with the names of the affected GoodRelations
concepts. Furthermore, a concise explanation about the functions’ capabilities is
given. The project code, licensed under a GNU Lesser General Public License
(LGPL), together with a more technical description of the API are available
on-line34. Furthermore, we set up a user interface5 where potential developers
can become acquainted with the library.

Table 1. Functions available in the GR4PHP library

Function GoodRelations
concept name

Explanation

getCompany BusinessEntity Fetch information (e.g. detailed address descriptions
or geo positions) about a legal entity, i.e. either a
company or an individual.

getOffers Offering Retrieve product or service offers and relevant de-
tails such as price specification, warranty promises,
or validity constraints.

getProductModel ProductOr-
ServiceModel

Return product models and related details that are
expressible in the range of the GoodRelations vocab-
ulary. Custom characteristics are supported only via
an extension mechanism as will be addressed later
in Section 3.3.

getStore Location Similar to getCompany, but information about a
point of sale are fetched rather than about a legal
entity. Furthermore, a filter to fetch only locations
with explicit opening hours statements that are open
at query time can be set.

getLocation Location Compile a list of nearby locations given a global lo-
cation number (GLN), the location name, or with
respect to a particular geo position.

getOpeningHours OpeningHours-
Specification

Return a list of opening hours given the GLN or
location name of a point of sale.

3 http://code.google.com/p/gr4php/
4 http://www.ebusiness-unibw.org/tools/gr4php/doc/, menu item GR4PHP
5 http://www.ebusiness-unibw.org/tools/gr4php/

http://code.google.com/p/gr4php/
http://www.ebusiness-unibw.org/tools/gr4php/doc/
http://www.ebusiness-unibw.org/tools/gr4php/

The library was developed on and tested against Virtuoso6 servers of Open-
link Software. Nevertheless, most functionality provided is intended to work with
arbitrary SPARQL endpoints that adhere to SPARQL 1.0 [13] with one addi-
tional requirement. I.e., most queries generated by the library take advantage of
the contains-function which was added with the advent of SPARQL 1.1 [8].

3.2 Conceptual Architecture

The functions presented above constitute a high-level view on the GR4PHP
component. In the following, the issue of what happens if a developer invokes
one of those functions is addressed. Fig. 1 outlines the conceptual architecture
of our approach.

Web server

RDF store with
SPARQL
endpoint

GR4PHP library

Web application

SPARQL query
API call

JSON response

PHP array

Fig. 1. Conceptual architecture

The highlighted component in Fig. 1 represents the PHP library. The library
serves as an intermediary between the Web application and the RDF store, i.e.
a Web application can use the API as a wrapper to indirectly communicate
with the SPARQL endpoint. This way all complexity is hidden from the devel-
oper, which involves in particular (a) crafting a valid and inexpensive SPARQL
query, (b) packing it into a HTTP request, (c) sending the request to the remote
SPARQL endpoint, and (d) unpacking and converting the HTTP response into
a PHP-friendly data type. Consequently, users are only confronted with PHP
functions and a uniform way of calling them. We continue with the explanation
of request and response flows involved in a function call:

Request. Depending on the type of method invoked and on the input data sup-
plied, the library will build up a respective SPARQL query in an automatic
manner. The PHP API will return an immediate error message if the parame-
ters supplied are wrong or not feasible, without even contacting the SPARQL
endpoint. If the input parameters proved valid according to the PHP API, the

6 http://virtuoso.openlinksw.com/

http://virtuoso.openlinksw.com/

generated query is further relayed to the SPARQL endpoint of the RDF store
that may contain and subsequently return the relevant data.

Response. Once the results become available, the library proceeds with taking
care of the response by converting the JSON results into a PHP array, ready to
be processed further by the Web application. Most SPARQL endpoints provide
mechanisms to return response messages with JSON-encoded results, e.g. via
RESTful HTTP requests with proper URI parameters supplied.

3.3 API Interface

In the following, we specify how developers can interact with the library and
invoke the supported functions. First of all, developers have to indicate the end-
point they want to connect to and execute queries on. The configuration lists a
couple of popular endpoints for linked open commerce (that contain GoodRela-
tions), but user-defined endpoint URIs can also be supplied. Furthermore, de-
velopers can provide an optional timeout value for the execution of the HTTP
request. Like with any other conventional API interface, a function can be called
and executed after setting up a connection. The function call may be preceded by
preliminary tasks like configuration or customizations, such as binding prefixes
for querying custom, application-specific properties in the dataset.

As outlined in Section 3.1, GR4PHP provides six distinct functions for con-
suming GoodRelations data from a SPARQL endpoint. All functions share a
uniform interface comprising up to five input parameters, as listed below:

– inputArray : Provides filter constraints as an associative array with key-value-
pairs to narrow down the result set; keys serve to select an appropriate
template from a set of possible triple pattern templates, and values are used
to match literals or to set limits (e.g. maxPrice) in FILTER constraints.

– wantedElements: Projection feature that indicates the subset of elements
that should be returned as an associative array.

– mode: Two search modes are supported, namely :lax (substring matches) and
a more restrictive :strict mode (full matches based on strings and datatypes).

– limit : Specifies the maximum number of results to be returned (LIMIT so-
lution modifier in SPARQL). For the sake of simplicity, clauses for advanced
use like ORDER BY, OFFSET, etc. were not added to the library.

– searchProperties: Associative array of user-defined, application-specific prop-
erties to be sought for a conceptual entity determined by the function name.

Listing 1.1 shows a method signature in PHP valid for all functions avail-
able in the library. The asterisk serves as a placeholder for the various function
names. The usage of the square brackets in the signature indicates that the first
parameter is mandatory, while the remaining parameters are optional and can
be omitted. If optionals are missing, their default values apply. For example, if
no mode argument is supplied, the default value Configuration::MODE LAX is
taken, which is a constant value that stands for :lax and denotes the lax search
mode. Similarly, if no argument for limit is present, the default configuration
value applies which amounts to 20.

1 function get*(array $inputArray , // constraints array
2 [array $wantedElements=FALSE], // selection array
3 [string $mode=Configuration :: MODE_LAX], // search mode
4 [int $limit=Configuration :: LIMIT], // result limit
5 [array $searchProperties=FALSE]) // custom properties

Listing 1.1. Method signature of API functions

As the project progressed, the need to query custom, application-specific
properties arose. Thus, we provided a simple extension whereby unforeseeable
properties from external vocabularies can be queried. Two changes were neces-
sary for that, namely to provide a mechanism to create new prefix bindings and
a slight amendment of the method signatures, i.e. the addition of an associative
array (i.e. searchProperties) as a new parameter to specify custom properties to
seek. For instance, a search criterion foo:prop denotes that all values of a property
prop with a previously bound custom prefix foo are sought in the dataset. Simi-
larly, the extension mechanism can be used more straightforwardly by providing
full URIs for search properties instead of CURIEs peculiar to the Semantic Web.

3.4 Query Building Process

The input parameters of the API functions determine the types and constraints
that eventually appear in the SPARQL query. Based on the type of function in-
voked and array parameters supplied the library populates a respective SPARQL
template by joining graph pattern statements that apply (including triple pat-
terns and clauses). This query building process doesn’t require any further hu-
man involvement. It basically follows the natural order given by the structure of
a SPARQL query [13], and thus comprises the following four stages:

1. Projection. First of all, the SELECT -part is built up. Possible values to
select from consist of (a) general variables common to all functions (uri
and title), (b) method-specific variables (e.g. gln in the context of getStore),
and (c) values of proprietary properties (i.e. the extensibility mechanism
addressed in Section 3.3). In the special context of nearby locations, an
additional distance value to a reference point is computed and returned.
In order to avoid expensive queries that fetch all possible select values no
matter if they are going to be used by the application or not, developers can
explicitly provide a list of properties to be sought.

2. Graph pattern. The structure of the graph pattern can be divided into three
logical parts: (1) the rdf:type statement that defines the considered concep-
tual entity, (2) statements to constrain the result set according to input
values supplied, and (3) an optional part composed of statements in OP-
TIONAL clauses to bind values to variables in the result form.

3. Solution modifiers. Besides the DISTINCT modifier in the result form of
the SPARQL query the library also allows to limit the maximum number of
results returned using the LIMIT solution modifier.

4. Prefix bindings. Finally, the algorithm prepends prefixes used in the SPARQL
query. It also involves prefixes for custom vocabularies that have to be bound
explicitly by the Web developer.

In addition to simple graph pattern matching, the library includes a few
more complex functions that allow to manipulate query results. For instance, by
using maxPrice it is possible to filter offers by a specified upper price limit (e.g.
list offers that cost less than 25 euros), which is rewritten to a SPARQL query
with a respective FILTER-expression. Currently, the library embodies the most
relevant constraints for e-commerce that an average developer will need.

3.5 Demonstration

A typical example of using the PHP programming library for consuming e-
commerce data from the Semantic Web can be implemented with only three
lines of code as illustrated in Listing 1.2.

1 require_once(’gr4php.php’); // include library
2 $connection = new GR4PHP(Configuration :: ENDPOINT_URIBURNER);
3 $result_array = $connection ->getStore(array("title"=>"Ravensburg"),

array("title", "street", "city"), Configuration ::MODE_LAX , 5);

Listing 1.2. Sample usage of the PHP library

The statement at line 1 includes the library. At line 2 the connection with
the remote endpoint is set up, whereas at line 3 information about locations,
constrained by the term Ravensburg appearing in textual properties, are fetched
from the endpoint. In the given example, each of the five result sets will consist
of three fields, namely title, street and city. Table 2 details the results as they
are contained in the returned associative array.

Table 2. Query results

title street city

Kreissparkasse Ravensburg Marienplatz 28 Ravensburg
Kreissparkasse Ravensburg Meersburger Str. 1 Ravensburg
CineParC Ravensburg, Burgtheater Marienplatz 4 Ravensburg
BODY STREET Ravensburg Gartenstr. 25 Ravensburg
Bauernmarkt Ravensburg Marktstr. 6 Ravensburg

The query related to code and results exemplified above is outlined in Listing
1.3 (with prefix declaration omitted). There are several patterns provided by dif-
ferent vocabularies to describe address details, e.g. one pattern from vCard 2001
and two additional patterns from vCard 2006; similarly, there exist numerous
textual properties that are relevant for string-based matches.

1 SELECT DISTINCT ?title ?street ?city
2 WHERE {
3 {?uri rdfs:label ?title. FILTER(contains (?title , ’Ravensburg ’))} UNION
4 {?uri gr:name ?title. FILTER(contains (?title , ’Ravensburg ’))} UNION
5 {?uri gr:description ?title. FILTER(contains (?title , ’Ravensburg ’))} UNION
6 {?uri rdfs:comment ?title. FILTER(contains (?title , ’Ravensburg ’))} UNION
7 {?uri dc:title ?title. FILTER(contains (?title , ’Ravensburg ’))}
8 {?uri a gr:Location} UNION {?uri a gr:LocationOfSalesOrServiceProvisioning}
9

10 OPTIONAL {
11 {?uri vc:ADR ?adr} UNION {?uri vc06:adr ?adr}
12 OPTIONAL {{? adr vc06:street -address ?street} UNION {?adr vc:Street ?street }}
13 OPTIONAL {{? adr vc06:locality ?city} UNION {?adr vc:City ?city}}
14 }
15 }
16 LIMIT 5

Listing 1.3. SPARQL query for fetching stores that include the term Ravensburg

4 Evaluation

In order to validate the usefulness of our approach, it was necessary to compare
the task of programming by means of the PHP API with the work involved in
crafting corresponding SPARQL queries. For that purpose we set up an experi-
ment where we selected two groups of developers who are aware of the GoodRela-
tions vocabulary for e-commerce: The first group consisted of six volunteers that
have advanced skills in PHP programming. We asked them to complete two pro-
gramming assignments by help of our programming library, while having full
access to the documentation that we provide on-line. Similarly, we asked two
SPARQL-proficient developers to provide SPARQL queries with respect to the
assigned tasks. Finally, we compared the average times spent by the two groups.
The concrete assignments that participants were asked to complete were:

– Task 1: Query n=10 offers with textual properties (gr:name, rdfs:label, etc.)
that contain the keyword ”Bruce Springsteen” and cost less than 25 euros.
Use an endpoint for linked open commerce (e.g. URIBurner) to complete
this assignment and take the time.

– Task 2: Query n=5 business locations of the company ”Containex”. Again,
take the time you spent for completing this assignment.

Table 3 shows the times spent for the two tasks by the eight participants.
Group A represents the group that took advantage of the PHP library, group B
the developers who formulated SPARQL queries instead.

Table 3. Times spent (mm:ss) for the completion of the assignments

Group A Group B

1 2 3 4 5 6 � 1 2 �
Task 1 3:15 3:30 8:00 2:30 6:00 16:00 6:32 11:30 15:00 13:15
Task 2 1:30 2:15 5:00 2:00 3:00 5:00 3:07 5:30 7:00 6:15

An independent-samples t-test was conducted to compare times in group A
and in group B. There was a significant difference in the times spent for task 1 by
group A (M=392.5 sec, SD=303.9 sec) and by group B (M=795 sec, SD=148.5 sec);
p=0.0332. Similarly, there was a significant difference in the times spent for
task 2 by group A (M=187.5 sec, SD=91.9 sec) and by group B (M=375 sec,

SD=63.6 sec); p=0.0297. These results suggest that the usage of our program-
ming library had an effect on developer performance.

Our results suggest that when developers use our programming library they
can expect higher productivity than candidates who try to achieve the same
results by formulating respective SPARQL queries. Furthermore, we found out
that manually crafted SPARQL queries are typically less complete in a sense of
missing consideration regarding various schema patterns that frequently occur
in real datasets.

Validation in practice. The first Web application that took advantage of the
PHP library, Ravensburg App7, further confirms the applicability of our ap-
proach. Ravensburg App is a mobile application for finding points of interest in
Ravensburg city based on the GoodRelations vocabulary. The Ravensburg App
developers feature their own, controlled RDF store with cleansed data from the
municipality of Ravensburg city. The Ravensburg dataset is publicly available
in the form of 700 individual RDF/XML documents8. During that project ad-
ditional bug-fixes were made, the library was gradually enhanced and incoming
feature requests were incorporated. Additionally, we provide some useful exten-
sions, namely the extensibility mechanism and a means that allows to figure out
whether a certain store is currently open or not.

5 Conclusions

In this paper, we presented a powerful software library for PHP developers to
consume e-commerce data from the Semantic Web. Our library provides an ef-
ficient way of fetching useful information about stores, offers, product models,
and opening hours from a public SPARQL endpoint. At the same time, it hides
the complexity of SPARQL and schema patterns from the programmer. Pro-
grammers do not have to deal with details such as RDF modeling patterns,
data cleansing heuristics, publication variants of RDF, or subtleties regarding
the architecture of the SPARQL engine.

To validate our approach, we conducted an experiment. We compared the
times to complete a programming assignment using our library with the times
by formulating a SPARQL query. We showed that the amount of time for the
implementation can be reduced significantly. The successful use in a real-world
application further confirms the feasibility of our approach.

As future work we consider to repeat our preliminary experiment with a larger
sample size to provide more evidence of the benefit of our approach. We believe
that our PHP programming library is a proper tool to give rise to the implemen-
tation of integration of semantic data into Web pages based on e-commerce data
on the Semantic Web, mobile application development considering contextual
properties (e.g. geo positions), and novel product search engines.

7 http://www.lieber-ravensburg.de/developer/
8 http://www.wifo-ravensburg.de/rdf/sitemap.xml

http://www.lieber-ravensburg.de/developer/
http://www.wifo-ravensburg.de/rdf/sitemap.xml

Acknowledgments. Parts of the work presented in this paper have been sup-
ported by the German Federal Ministry of Research (BMBF) by a grant under
the KMU Innovativ program as part of the Intelligent Match project (FKZ
01IS10022B).

References

1. Ben Abacha, A., Zweigenbaum, P.: Medical Question Answering: Translating Med-
ical Questions into SPARQL Queries. In: Proceedings of the 2nd ACM SIGHIT In-
ternational Health Informatics Symposium. pp. 41–50. Miami, Florida, USA (2012)

2. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American
284(5), 34–43 (2001)

3. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. International
Journal on Semantic Web and Information Systems 5(3), 1–22 (2009)

4. Campinas, S., Perry, T.E., Ceccarelli, D., Delbru, R., Tummarello, G.: Introducing
RDF Graph Summary with Application to Assisted SPARQL Formulation. In: Pro-
ceedings of the 11th International Workshop on Web Semantics and Information
Processing. (to appear), Vienna, Austria (2012)

5. Clark, L.: SPARQL Views: A Visual SPARQL Query Builder for Drupal. In: Pro-
ceedings of the ISWC 2010. Shanghai, China (2010)

6. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. thesis, University of California, Irvine (2000)

7. Hakeem, A., Lee, M.W., Javed, O., Haering, N.: Semantic Video Search Using
Natural Language Queries. In: Proceedings of the 17th International Conference
on Multimedia. pp. 605–608. Beijing, China (2009)

8. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language (2012), http://www.w3.org
/TR/sparql11-query/

9. Hepp, M.: GoodRelations: An Ontology for Describing Products and Services Of-
fers on the Web. In: Proceedings of the 16th International Conference on Knowledge
Engineering. pp. 332–347. Acritezza, Italy (2008)

10. Kaufmann, E., Bernstein, A.: How Useful are Natural Language Interfaces to the
Semantic Web for Casual End-users? In: The Semantic Web, 6th International
Semantic Web Conference, 2nd Asian Semantic Web Conference. pp. 281–294.
Busan, Korea (2007)

11. Kobayashi, N., Toyoda, T.: BioSPARQL: Ontology-based Smart Building of
SPARQL Queries for Biological Linked Open Data. In: Proceedings of the 4th
International Workshop on Semantic Web Applications and Tools for the Life Sci-
ences. pp. 47–49. London, UK (2012)

12. Manola, F., Miller, E.: RDF Primer (2004), http://www.w3.org/TR/rdf-primer/
13. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF (2008),

http://www.w3.org/TR/rdf-sparql-query/
14. Unger, C., Bühmann, L., Lehmann, J., Ngonga Ngomo, A.C., Gerber, D., Cimiano,

P.: Template-based Question Answering over RDF Data. In: Proceedings of the
21st World Wide Web Conference. pp. 639–648. Lyon, France (2012)

15. Yahya, M., Berberich, K., Elbassuoni, S., Ramanath, M., Tresp, V., Weikum, G.:
Deep Answers for Naturally Asked Questions on the Web of Data. In: Proceedings
of the 21st World Wide Web Conference. pp. 445–449. Lyon, France (2012)

http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-sparql-query/

	GR4PHP: A Programming API for Consuming E-Commerce Data from the Semantic Web

