
From RDF to RSS and Atom:
Content Syndication with Linked Data

Alex Stolz
Universität der Bundeswehr München

E-Business and Web Science Research Group
85577 Neubiberg, Germany

+49-89-6004-4277
alex.stolz@unibw.de

Martin Hepp
Universität der Bundeswehr München

E-Business and Web Science Research Group
85577 Neubiberg, Germany

+49-89-6004-4217
mhepp@computer.org

ABSTRACT

For typical Web developers, it is complicated to integrate content
from the Semantic Web to an existing Web site. On the contrary,
most software packages for blogs, content management, and shop
applications support the simple syndication of content from
external sources via data feed formats, namely RSS and Atom. In
this paper, we describe a novel technique for consuming useful
data from the Semantic Web in the form of RSS or Atom feeds.
Our approach combines (1) the simplicity and broad tooling
support of existing feed formats, (2) the precision of queries
against structured data built upon common Web vocabularies like
schema.org, GoodRelations, FOAF, SIOC, or VCard, and (3) the
ease of integrating content from a large number of Web sites and
other data sources of RDF in general. We also (4) provide a
pattern for embedding RDFa into the feed content in a “viral” way
so that the original URIs of entities are included in all Web pages
that republish the original content and that those pages will link
back to the original content. This helps prevent the proliferation of
identifiers for entities and provides a simple means for tracking
the document URI at which particular content reappears.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation Formalisms
and Methods

General Terms
Experimentation, Human Factors, Standardization, Languages

Keywords
RDF, RDFa, Microdata, RSS, Atom, Content Syndication,
Affiliate Marketing, GoodRelations, Pipes

1. INTRODUCTION
In the past four years, the amount of useful, non-toy RDF content
on the Web has grown tremendously: In the field of e-commerce,
major retail sites like bestbuy.com, overstock.com, oreilly.com,
and countless smaller shops have added RDFa markup to their
page templates, exposing at least 25 million offer entities on a
daily basis, and services like productdb.org and
linkedopencommerce.com contain tens of thousands of rich
product datasheets. In parallel, the various activities in the Linked
Open Data community [1] contribute a lot of data, in particular

about places, artists, brands, geography, transportation, and
related facts. While there are still quality issues in many sources,
there is little doubt that much of the data could add some value
when integrated into external Web sites. For example, think of a
Beatles fan page that wants to display the most recent offers for
Beatles-related products for less than 10 dollars, a hotel that wants
to display store and opening hours information about the
neighborhood on its Web page, or a shopping site enriched by
external reviews or feature information related to a particular
product.

Unfortunately, consuming content from the growing amount of
Semantic Web data is burdensome (if not prohibitively difficult)
for average Web developers and site owners, for several reasons:
Even in the ideal case of having a single SPARQL endpoint [2] at
hand that already collates the data, one has to (1) craft a suitable
SPARQL query, (2) connect to the SPARQL endpoint, and (3)
extract and render the results from a variety of formats (e.g.
RDF/XML, Turtle, or N3). Even in the case of an endpoint that
offers a developer-friendly JSON representation of the results
[3-6], processing the output requires an advanced understanding
of RDF and the vocabularies used in the original data. Crafting
suitable SPARQL queries is in practice also not as easy as in
textbook examples, since one has to be aware of (1) alternative
modeling patterns, (2) competing vocabularies for the same
aspects, and (3) typical data quality problems. For instance, even
in the simple domain of contact information, a potential consumer
faces at least five different vocabularies, because such data is
being modeled in schema.org [24], FOAF [7] and at least three
variants of vCard ontologies [8-10]. Relatively simple geo-
position information can be modeled e.g. using either schema.org
[24], the WGS84 vocabulary [11] or via vCard [8]. This means
that a consumer of data must have very advanced knowledge of
relevant vocabularies, their usage, and potential structural
alternatives within the same vocabulary. On top of that, a data
consumer has to expect and handle popular modeling mistakes
and data quality issues, like omitted datatype suffixes for RDF
literals, for good recall. In conclusion, it is currently difficult if
not impossible for the millions of “normal” Web developers to tap
the growing amount of Semantic Web data for their purposes,
while convincing those developers is important for broad
adoption. Their adoption is in turn critical for creating incentives
to publish structured data on the Web.

On the contrary to those hassles with consuming RDF data,
content syndication, i.e. the integration of remote content into a
Web site, has gained widespread popularity; for an overview, see
e.g. [12] or [13]. Content syndication in the narrower sense means
that one site provides access to a frequently updated extract of site
content in a standardized, structured syntax and that another site
consumes and integrates the respective “feed” into an existing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
24th ACM Conference on Hypertext and Social Media
1–3 May 2013, Paris, France.
Copyright 2013 ACM 978-1-4503-1967-6/13/05 ... $15.00

page layout [12]. Sites can either provide one or multiple
predefined feeds (e.g. the most recent entries from a particular
blog) or allow configuring customized feeds (e.g. news entries
containing a particular keyword).

Content syndication has incentives for both publishers and
consumers: Publishers can increase the reach of their content, and
that into very qualified audiences, since feeds are often consumed
by sites very related to the original content. Subscribers can
augment their pages by fresh, quality content that they could not
produce themselves. Large shopping sites like Amazon and eBay
also support feeds that are tied to a registered affiliate account,
who will earn a commission on purchases initiated via this
affiliate’s site, thus providing a monetary incentive for including
their content [14]. Also, specific and fresh content is honored by
search engines and may thus lead to a better ranking in the organic
search results.

The most prominent feed formats that can be found on the Web
are RSS 2.0 (“Really Simple Syndication”, [15]) and ASF or
Atom (“Atom Syndication Format”, [12, 16]). Both the multiple
RSS versions (e.g. [17] and [15]) as well as Atom are actively
used on the Web, but despite technical advantages of the Atom
format, the RSS family is still the most popular feed with a market
share of ca. 70-80% [18; 25]. An interesting aspect of content
syndication via feed formats is the high degree of currency.
Already back in 2005, i.e. several years before “real-time”
services like Twitter appeared, a study [18] showed that 55% of
RSS feeds were updated on an hourly basis.

In this paper, we describe the use of RSS and Atom feed syntaxes
for accessing the growing amount of useful data from the
Semantic Web. The main idea is to leverage the consumption of
Linked Data by exploiting widely standardized data formats as a
carrier. For this purpose, query results from single or federated
SPARQL endpoints are transformed into RSS or Atom feeds,
which can then be consumed by feed readers and feed aggregators
as desktop applications, or respective modules for blog, shop, or
CMS software. Our approach combines the simplicity and broad
tooling support of existing data feed formats with the precision of
queries against structured data built upon common Web
vocabularies like schema.org [24], GoodRelations [19], FOAF
[7], SIOC [20], or VCard [8], and the ease of integrating content
from a large number of Web sites and other data sources of RDF
in general. This is difficult with traditional feeds, because their
content is difficult to consolidate (e.g. to list the cheapest ten
offers from the union of an Amazon and an eBay feed), filter (e.g.
show only shops in New York), or convert (e.g. show prices in
Euro, no matter which currency the original feed uses). We also
show how a subset of the original RDF data can be included in the
feed as non-intrusive payload in the form of RDFa in escaped
HTML markup (“Viral RDFa”), so that the original URIs of data
objects remain available and will be contained in any Web page
that republishes the data. By including a foaf:page property
we can even link back from the URIs of the Web pages
republishing the feed content to the original entities. These two
approaches help prevent the proliferation of identifiers for entities
and provide a simple means for tracking the document URI at
which specific content reappears.

As a proof-of-concept, we developed a prototype1 that (1)
translates the definition of desirable e-commerce content, from a
site-owner’s perspective, into non-trivial SPARQL queries for

1 http://www.stalsoft.com/gr2rss/

GoodRelations-based data, (2) pre-fetches and caches respective
content for fast delivery, and (3) embeds the original URIs for
data entities in escaped RDFa inside the resulting feeds.

The structure of the paper is as follows: In Section 2, we describe
the approach at the conceptual level. In Section 3, we evaluate our
work and compare it with existing approaches, namely Yahoo
Pipes [21] and DERI Pipes [22]. Section 4 discusses the work and
summarizes our contribution. Section 5 concludes the paper.

2. RDF DATA AS RSS OR ATOM FEEDS
In this section, we describe our approach, in particular the viral
use of RDFa in feed content. We also discuss techniques for
making the consumption of Linked Data via syndicated feeds
more useful for site owners, e.g. by adding geo-position
information in a format supported by popular site software
packages.

2.1 Approach
The basic idea is to combine the following components: (1) a
query builder that generates SPARQL queries for the desired
content based on user input and takes into account alternative
RDF data patterns found in the wild and (2) a service that
executes the queries against a public SPARQL endpoint or
federation of SPARQL endpoints, enriches and caches the results,
and makes each custom query result available as both an Atom
and a RSS feed at a persistent URI. The URI of the feed can than
be simply pasted into a feed-based content syndication component
of an existing Web site. Since we use SPARQL endpoints as input
and popular feed formats as the output syntax, our approach can
also be chained up with RDF-oriented middleware (e.g. DERI
Pipes [22]) and tools for aggregating or transforming content in
traditional feed formats (e.g. Yahoo Pipes [21]). That means that
one could use DERI Pipes to combine and pre-process multiple
RDF-based data sources, expose the result as a SPARQL
endpoint, use our component to filter and transform the result into
a RSS or Atom, and then use Yahoo Pipes to post-process the
resulting feed.

2.2 Viral Use of RDFa
Republishing data from the Semantic Web via feed formats in
Web content has a few important caveats: First, it strips off the
valuable meta-data found in the original content. So a product
price that can be understood by a browser extension at the origin
of the information would be turned into plain text or HTML when
reappearing on a syndicating site. Second, crawlers finding the
content on the syndicating site have no direct means of
discovering the original data source (other than following each
and every HTML link). Third, there is no RDF triple that links the
original locations with the URIs on which content is being
republished. All this is undesirable, for it weakens the idea of the
Semantic Web, because it takes RDF data and makes it less usable
for machines.

Thus, we add a technique, which we call Viral RDFa: When
composing the feed contents, we embed additional information as
invisible RDFa (RDFa Snippet Style, see [26]) to suitable feed
fields. In order to keep the respective markup intact during the
processing of the feed payload, we use HTML entity encoding.
The same technique is often used by feed publishers to include
basic HTML formatting in text content (e.g. for boldface or

 for line-breaks) and is commonly supported by feed-
consuming applications.

This allows (1) adding proper RDFa markup to the content when
republished on a syndicating site, (2) enforcing the consistent use

of one canonical URI for the same entity across republishing sites,
and (3) adding a machine-readable link from the document URIs
of the pages with the syndicated content to the subject URIs.

Here is an example: Assume that the raw feed would encode a
product as follows:

<item>
 <title>Camcorder with Widescreen LCD</title>
 <description>The best camcorder...</description>
 <link>http://www.example.com/camcorder</link>
 <pubDate>Tue, 04 Dec 2012 23:33:07
+0100</pubDate>
 <guid isPermaLink="false">...omitted...</guid>
</item>
Then, in RDFa, the global URI of the product and the product
name and description would be encoded as:
<span typeof="gr:Offering"
 about="http://www.example.com/camcorder#product">
 <span property="gr:name"
 content="Camcorder with Widescreen LCD">
 The best
 camcorder...

Note that the line

will create a foaf:page triple from the subject entity to the URI
of the page in which the RDFa parser will find the markup. This
allows adding the respective link without knowing the URI of the
final target page in advance (which is not available in anonymous
publish-subscribe scenarios anyway).

As a next step, we use HTML entity encoding for this RDFa
snippet and insert it into the <description> field of the feed:

<item>
 <title>Camcorder with Widescreen LCD</title>
 <description><span
typeof="gr:Offering"
about="http://www.example.com/camcorder#produ
ct">
 <span property="gr:name"
content="Digital Camcorder with Widescreen
LCD">
 <span
property="gr:description">The best
camcorder...
 <span rel="foaf:page"
resource="">
</description>
 <link>http://www.example.com/camcorder</link>
 <pubDate>Tue, 04 Dec 2012 23:33:07
+0100</pubDate>
 <guid isPermaLink="false">...omitted...</guid>
</item>

A typical feed consuming component will decode the HTML
entity sequences like (e.g. <) into the original characters (<)
before generating the HTML of the page including the syndicated
content. Then, the RDFa snippet shown above with the canonical
entity URI (via the about keyword) and the link to the current
page (via the foaf:page statement) will be included in the final
HTML without the need for any intervention by the operator of
the syndicating site. Suitable fields in feed formats to carry entity-
encoded HTML are the <content> and <summary> fields in
Atom and the <description> field in RSS. In a practical
scenario, one will likely add a little bit more granular RDFa, e.g.
including strong product identifiers for products (UPC, ISBN,
GTIN13, …), structured price information, and image meta-data.

However, it is not necessary to pack the entire data into the RDFa
snippet, since a client can fetch additional data easily by
dereferencing the entity URI, because that will always point to the
original resource.

The foaf:page links will contribute to a growing graph of RDF
data, because they create triples from each entity URI to each and
every page mentioning it, assumed that the crawler used will
discover and process those pages. So we add a mechanism that
prevents the proliferation of entity identifiers and at the same time
provide a simple means for tracking the document URI at which a
particular piece of content reappears. Of course, the mechanism
does not help finding URIs of syndicating sites. Instead, it
preserves the link between related data. Examples of this approach
are available from http://www.stalsoft.com/gr2rss/examples.

Our RDFa-based approach can also be used to encode additional
meta-data into feeds for which no standard structures exist in the
respective feed formats. In fact, this allows using all schema.org
types and properties for publishing additional meta-data about
feeds and the entities contained therein. The same pattern can also
be used with microdata syntax [30].

2.3 Geo-Location Information
Information about the geo-position of places, events, or objects is
often available in public RDF data. Also, for many subscription
scenarios, geographic proximity will be a relevant filter. For
instance, a hotel may want to list restaurants or events in its
vicinity on its Web site. The geo-location is also a popular starting
point for establishing relations between data from different
sources, since physical proximity is often a good indicator of
relatedness. With traditional content syndication via feed formats,
geo-position information is often used to automatically show the
position of an entity on a Web-based map service like Google
Maps. A popular way to convey geo-location data via RSS and
Atom feeds is the so-called “geotagging” with GeoRSS2.
Respective tags can be attached to items inside RSS or Atom
feeds, while interoperability between feed consumers is typically
ensured. Embedding geo information for each entry into a content
feed allows applications like Google Maps to parse the relevant
location data and display them in one single map. The importance
of embedding geo information into RSS or Atom is also indicated
by the wealth of modules for CMS that provide GeoRSS support,
namely GeoPress3 for WordPress and the GeoRSS module4 for
Drupal. For geotagging locations in RSS or Atom feeds, there
exist three relatively similar standards, namely GeoRSS Simple5,
GeoRSS GML6, a more sophisticated geo-data markup language
than GeoRSS Simple, and GeoRSS7 by the W3C (now
deprecated, yet still popular).

In its simplest form, GeoRSS tagging means embedding geometry
points with longitude and latitude coordinates, which is sufficient
for our proposal. A point describing the city center of Munich
could e.g. be written in GeoRSS Simple syntax as
<georss:point>48.13695 11.57540</georss:point>

where the first floating point parameter determines the latitude
and the second describes the longitude.

2 http://www.georss.org/
3 http://georss.org/geopress
4 http://drupal.org/project/georss
5 http://www.georss.org/simple
6 http://www.georss.org/gml
7 http://esw.w3.org/GeoInfo

The same information as with GeoRSS Simple above can be
expressed in GeoRSS by the W3C as follows:
<geo:Point>
 <geo:lat>48.13695</geo:lat>
 <geo:long>11.57540</geo:long>
</geo:Point>

There are multiple ways of using geo-data in our proposed
technique. The most straightforward one is translating relevant
geo-position information from the RDF world into GeoRSS
Simple and GeoRSS by the W3C syntax so that consuming clients
can easily show the position of entities in dynamically generated
maps etc. In addition, one can use the “Viral RDFa” technique to
preserve geo-information for RDFa-aware clients in ways not
supported by the feed syntax standards. In our prototype, store
information can be ordered by their proximity to a given location.
Then, the prototype outputs a map containing markers for every
store that could be found. Furthermore, links to Google Maps are
provided, where the GeoRSS information will be interpreted by
the map rendering engine and displayed accordingly.

3. Evaluation
In this section, we describe the method and results of our
evaluation. In particular, we give a qualitative comparison of our
approach to the most relevant existing services, like Yahoo Pipes,
DERI Pipes, and Amazon and eBay feed services.

8 http://www.stalsoft.com/gr2rss/
9 http://pipes.yahoo.com/pipes/
10 http://pipes.deri.org/
11 http://pages.ebay.com/affiliates/tools/rssgenerator/index.html; this

service has been recently restricted to registered affiliates.
12 http://www.amazon.com/gp/tagging/rss-help.html

3.1 Qualitative Comparison
Table 1 shows the comparison of our prototype with available
alternatives. We used the following dimensions:
Multiple Sources: Is it possible to integrate data from multiple
sources (e.g. multiple sites)?

Consuming SPARQL Endpoints: Is it possible to integrate RDF
data from SPARQL endpoints?

Exposing RSS or Atom: Can the result be made available in
standard feed syntaxes?

Query Builder: Does the technology provide a user interface for
specifying the desired content?

Accessing structured data across multiple sources: Can the
query address individual data elements from multiple sources (e.g.
can it sort the union of offers from multiple vendors by price)?

Maintaining URIs for Entities: Are the canonical identifiers
(URIs, product identifiers, etc.) of entities preserved so that clients
can link the information with external data easily?

3.2 Yahoo Pipes and DERI Pipes
In addition to the evaluation described so far, we tried to integrate
two different endpoints in DERI Pipes [22]. Since its codebase
has not been updated for some time, it comes as no surprise that it
does not support JSON syntaxes for RDF. Thus, we could not
easily build a use-case on DERI Pipes and abandoned the idea.

Next, we tried the same integration task in Yahoo Pipes, but failed
again with integrating the results of the two endpoints: We were
not able to perform string matching and comparison between
labels (which are in fact not recognized as strings) from
dbpedia.org and linkeddata.uriburner.com. We did not manage to
consolidate entities on the basis of their URI. We finally managed
to integrate two feeds, namely an eBay RSS feed and an RSS feed

 Multiple
Sources

Consuming
SPARQL
Endpoints

Exposing
RSS

or Atom

Query
Builder

Usage of
structured
data across

multiple
sources

Maintaining URIs for Entities

Our Approach8 Yes Yes Yes Yes Yes Yes
Yahoo Pipes9 Yes No (maybe

possible via
with Fetch

Data module)

Yes No Limited, only
via feed

elements or
regular

expressions

No

DERI Pipes10 Yes Yes No No Yes Yes, but limited to RDF/XML output

eBay RSS Feed
Generator11

No No Yes Yes No No, only links to product offer pages

Amazon RSS
feeds12

No No Yes No No No

Manual
integration of
multiple feeds in
PHP etc.

Yes, but
integration

effort

Yes, but
difficult and

time-
consuming

Yes No Only via
regular

expressions

Depends on integrated sources

Table 1. Qualitative comparison of our approach with similar services

of from our tool in Yahoo Pipes. We were able to compare prices
on the level of price values (disregarding different exchange rates
for currencies), so we could sort items based on the price value.
Figure 3 shows our experiment.

Figure 1. Integration experiment in Yahoo Pipes

4. Discussion
In this section, we discuss our contribution and compare it with
existing alternatives.

4.1 Related Work
Besides the substantial body of work covering standard, XML-
based feed syndication (e.g. [12-18]), the most relevant related
work to our proposal are Yahoo Pipes [21] and DERI Pipes [22].

Yahoo Pipes is a Web-based tool for integrating Web content
from multiple sources, including feeds, CSV files, Web services,
and scraping content from HTML [21]. The source data can be
filtered, augmented, and transformed using various pre-defined
components, including string operations, regular expressions,
database-style aggregates, arithmetic operations, and more [21].
The results can be exposed in various syntaxes, e.g. RSS, JSON,
and KML for inclusion in a syndicating Web site [21]. Yahoo
Pipes is in general a powerful environment for data-based mash-
ups, in particular thanks to the mature user interface, rich library
of operators, and good documentation. However, consuming
Linked Data sources is not sufficiently supported. There is no
direct module for including SPARQL endpoints or to request RDF
syntaxes via HTTP content negotiation. It may be possible to
employ the Data Fetch module to include SPARQL endpoint data,
but that is even more burdensome than directly consuming such
data in a programming language. Also, the results will not contain
the original URIs of entities from data sources and thus break the
idea of Linked Data when the content is being republished. It is
also worth noting that, surprisingly, a team member from our
group with a moderate PHP background found using Yahoo Pipes
less productive that directly coding PHP scripts and mentioned a
substantial learning effort, despite the mature graphical user
interface. In our opinion, however, the main limitations of Yahoo
Pipes are that (1) it is currently not suited for integrating content
from the Semantic Web into Web sites and that (2) it breaks the
idea of Linked Data, because it strips off meta-data and Web-scale
identifiers.

DERI Pipes [22, 31] is very similar to Yahoo Pipes in its basic
approach, but was designed for consuming RDF data. It directly
supports the consumption of SPARQL endpoints [31] and offers
several operators specifically targeted at processing RDF data. In
comparison to our approach, it cannot produce RSS or Atom feeds
for easy consumption by existing Web application software
(except via complex, custom XSLT scripts). Also, the
consumption of existing RSS or Atom feeds is limited to a raw
XML import interface, which would require manual effort to
extract feed content. Finally, the use of the SPARQL import

interface requires considerable expertise for typical queries, e.g. in
e-commerce scenarios. It is also worth noting that the codebase of
DERI Pipes has not been updated since March 2009.

Neither Yahoo Pipes nor DERI Pipes support the preservation of
entity URIs and structured data via embedded RDFa in feeds.
While DERI Pipes provides substantial support for applying the
idea of piping to the RDF world, it is not properly linked with
popular RSS and Atom feed environments. Yahoo Pipes, on the
other hand, breaks the link between data from the source to the
syndicating site and thus further fragments the Web from a data
perspective.

For a few modern CMS systems (e.g. Drupal), there exists
functionality for directly including RDF content via SPARQL
queries, like the Drupal SPARQL Views module [32]. However,
this is still a very advanced approach for typical Web developers,
does not free them from a deep understanding of the SPARQL
query language, vocabularies, and the popularity of data patterns.
It is also unclear whether the original entity URIs can be
preserved and re-exposed as RDFa or microdata within Drupal.

4.2 Our Contribution
In this paper, we proposed to use the popular RSS and Atom
syntaxes for consuming the growing amount of Linked Data in
real-world content syndication scenarios, while preserving the
original Web-scale entity identifiers and formally representing the
relations between original entities and the URIs of Web resources
that republish the content by a viral pattern of RDFa or microdata
syntax that survives typical transformations in Web applications.
We have given very preliminary evidence that this direction
simplifies the consumption of RDF data for Web developers. In
comparison to the two existing approaches, our proposal serves
the idea of Linked Data better than Yahoo Pipes and integrates
better into RSS and Atom feed consumption infrastructure than
DERI Pipes. As a proof-of-concept, we developed a mature
prototype13 that translates the definition of desirable e-commerce
content from a site-owner’s perspective into non-trivial SPARQL
queries for GoodRelations-based data, (2) pre-fetches and caches
respective content for fast delivery, and (3) embeds the original
URIs for data entities in RDFa inside the resulting feeds.

4.3 Future Extensions
Our proposal could of course benefit from future extensions. In
the particular, we plan to investigate adding learning components
so that the component will automatically adapt to emerging data
patterns. For specific e-commerce scenarios, we also want to add
support for opening hours information from GoodRelations and
add an option for exposing microdata using our “viral” pattern.
Also, a deeper investigation of a consolidated ranking of results
gained from multiple sources is desirable.

On the economic side, support for monetary compensations for
traffic or transactions caused by content syndication by an affiliate
will be a promising direction.

We will also further investigate the generalization of our idea to
transport more structured data as “viral” RDFa or microdata
embedded as escaped content in existing syntaxes, for this will
allow using e.g. the broad coverage and granularity of the
schema.org vocabulary for augmenting various rigid XML-based
exchange syntaxes in a backwards-compatible way.

13 http://www.stalsoft.com/gr2rss/

5. Conclusion
We have shown how popular RSS and Atom feed syntaxes and
infrastructure can be used to reduce the barriers for syndicating
Linked Data content in typical Web applications in a way that
prevents a proliferation of entity identifiers and that support the
growth of a giant graph of data. Taking away the barriers for
integrating Linked Data will increase the number of sites that
consume and republish the underlying information, thus creating
stronger incentives for owners of content to offer SPARQL
endpoints and Linked Data for their assets.

6. ACKNOWLEDGMENTS
The authors would like to thank Uwe Stoll for testing our
implementation and for providing valuable feedback. The work
described in this paper was partly sponsored by the German
Federal Ministry of Education and Research (BMBF) under the
project “IntelligentMatch”, grant identifier 01IS10022B.

7. REFERENCES

[1] Linked Data - Connect Distributed Data across the Web,

available at http://linkeddata.org/, retrieved 2012-12-08.
[2] SPARQL Protocol for RDF. W3C Recommendation 15

January 2008, available at http://www.w3.org/TR/rdf-sparql-
protocol/, retrieved 2012-12-08.

[3] Talis: RDF JSON, available at
http://docs.api.talis.com/platform-api/output-types/rdf-json,
retrieved 2012-12-08.

[4] Clark, K.; Feigenbaum, L.; Torres, E.: SPARQL 1.1 Query
Results JSON Format, W3C Proposed Recommendation 08
November 2012, available at
http://www.w3.org/TR/sparql11-results-json/, retrieved
2013-03-02.

[5] Alexander, K.: RDF/JSON: A Specification for serialising
RDF in JSON In: Bizer, C., Auer, S., Grimnes, G.A., Heath,
T. (eds.): Proceedings of the 4th Workshop on Scripting for
the Semantic Web (SFSW '08), Vol. 368. CEUR-WS,
Tenerife, Spain (2008) 1-6.

[6] JSON-LD - Expressing Linked Data in JSON, available at
http://json-ld.org/, retrieved 2012-12-08.

[7] FOAF Vocabulary Specification 0.98, available at
http://xmlns.com/foaf/spec/, retrieved 2012-12-08.

[8] Halpin, H.; Iannella, R.; Suda, B.; Walsh, N.: Representing
vCard Objects in RDF. W3C Member Submission 20
January 2010, available at
http://www.w3.org/Submission/vcard-rdf/, retrieved 2012-
12-08.

[9] Ianella, R.: Representing vCard Objects in RDF/XML. W3C
Note 22 February 2001, available at
http://www.w3.org/TR/2001/NOTE-vcard-rdf-20010222/,
retrieved 2012-12-08.

[10] Yahoo Developer Network: VCard, available at
http://developer.yahoo.com/searchmonkey/smguide/vcard.ht
ml, offline as of 2012-12-08.

[11] Brickley, D. (ed.): Basic Geo (WGS84 lat/long) Vocabulary,
available at http://www.w3.org/2003/01/geo/, retrieved 2012-
12-08.

[12] Sayre, R.: Atom: The Standard in Syndication. IEEE Internet
Computing 9 (2005) 71-78.

[13] Hess, T.: Content Syndication. Wirtschaftsinformatik 43
(2001) 83-85.

[14] RSS web feeds for tags at Amazon.com, available at
http://www.amazon.com/gp/tagging/rss-help.html, retrieved
2012-12-08.

[15] RSS 2.0 Specification, available at
http://www.rssboard.org/rss-specification, retrieved 2012-12-
08.

[16] The Atom Syndication Format, available at
http://tools.ietf.org/html/rfc4287, retrieved 2012-12-08.

[17] RSS 0.90 Specification, available at
http://www.rssboard.org/rss-0-9-0, retrieved 2012-12-08.

[18] Liu, H.; Ramasubramanian, V.; Sirer, E.: Client behavior and
feed characteristics of RSS, a publish-subscribe system for
web micronews. Proceedings of the 5th ACM SIGCOMM
conference on Internet Measurement, Berkeley, CA, 2005.

[19] Hepp, M.: GoodRelations: An Ontology for Describing
Products and Services Offers on the Web. 16th International
Conference on Knowledge Engineering and Knowledge
Management (EKAW2008), Vol. 5268, Springer LNCS
(2008), pp. 332-347.

[20] SIOC Core Ontology Specification. 25 March 2010,
available at http://sioc-project.org/ontology, retrieved 2012-
12-08.

[21] http://pipes.yahoo.com/pipes/, retrieved 2012-12-08.

[22] Phuoc, D.L., Polleres, A., Morbidoni, C., Hauswirth, M.,
Tummarello., G.: Rapid Semantic Web Mashup
Development Through Semantic Web Pipes. Proceedings of
the 18th World Wide Web Conference (WWW2009). ACM
Press, Madrid, Spain (2009), pp. 581-590.

[23] Vocabulary of Interlinked Datasets (voiD), available at
http://vocab.deri.ie/void, retrieved 2012-12-08.

[24] http://schema.org, retrieved 2012-12-08.

[25] http://www.syndic8.com/stats.php?Section=feeds#RSSVersi
on, retrieved 2012-12-08.

[26] Hepp, M.; García, R.; Radinger, A.: RDF2RDFa: Turning
RDF into Snippets for Copy-and-Paste, Technical Report
TR-2009-01, 2009. PDF available at
http://www.heppnetz.de/files/RDF2RDFa-TR.pdf.

[27] Shvaiko, P.; Euzenat, J.: Ontology matching: State of the Art
and Future Challenges. IEEE Transactions on Knowledge
and Data Engineering, Vol. 25, Nr. 1, 2013, pp. 158-176.

[28] http://wiki.goodrelations-vocabulary.org/Axioms, retrieved
2012-12-08.

[29] Berners-Lee, T.: Cool URIs don’t change.
http://www.w3.org/Provider/Style/URI.html, retrieved 2012-
12-08.

[30] http://www.whatwg.org/specs/web-apps/current-
work/multipage/microdata.html, retrieved 2012-12-18.

[31] http://pipes.deri.org/, retrieved 2012-12-18.
[32] http://drupal.org/project/sparql_views, retrieved 2012-12-18.

