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Abstract—Enriching web shop pages with structured data has
recently become popular in e-commerce. It is mainly driven by
search engines favouring those pages. While structured data in e-
commerce is mainly generated automatically by shop extensions,
this data covers only a small share of the market, resulting
in a major hamper for applications operating on aggregated
data. In this context, more than 90% of product detail pages
on the web are generated by only 7 e-commerce systems.
Meanwhile, little research addresses methods to automatically
detect e-commerce systems. Automated detection would allow to
design system-specific extractors able to grow the amount of
structured data in e-commerce. Therefore, we propose a novel
approach to this problem, which filters features generated from
HTML tag attributes with an e-commerce specific white list. We
evaluate 6 classification algorithms on the problem and discuss
computational effort. We can show that this approach is capable
of detecting the 6 most important e-commerce systems with a F1-
score of 0.9 by analyzing only one HTML page per web shop. We
evaluate our findings on an independent dataset and on reference
shop sites.

Keywords—e-commerce systems, supervised machine learning,
web page classification

I. INTRODUCTION

Enriching web shop pages with structured data using
RDFa1, Microdata2, or Microformats3 has recently become
a popular method in e-commerce. The GoodRelations web
ontology allows to express a manifold of e-commerce cases.
[1]. Embedding structured data in e-commerce pages has
recently matured to a first-choice SEO strategy, as the search
engines Google, Bing, Yahoo and Yandex officially support
GoodRelations in the schema.org consortium [2].
For shop owners, the use of structured data is mainly driven
by the promise of search engines to enhance result pages with
price, availability and reviews. There is evidence that those
enhanced search results lead to higher click-through rates,
which in turn lead to higher conversions [3].
There is a multitude of terms for software that allows mer-
chants to run online shops, like shop software package, shop-
ping cart, or shop system. As the software mostly integrates
a multitude of functions like payment or inventory control
related to ecommerce, we would like to emplay the term e-
commerce system (ECS) cohenrently throughout the paper to
refer to this kind of software. Structured data in e-commerce is

1http://www.w3.org/TR/xhtml-rdfa-primer
2http://www.w3.org/TR/microdata/
3http://microformats.org/about

mainly generated by Web shop extensions. Those extensions
allow shop owners to easily integrate structured data. Many
shop owners run their sites on standard e-commerce systems
like Magento4, Prestashop5 or Virtuemart6. This allows for the
development of shop extensions for structured data generation
with high reach [4]. Meanwhile, the overall market coverage of
those extensions is relatively low. This is especially a limitation
for applications that build on aggregated data. While there are
about 20.000 Web shops that generate structured data, this only
covers a relatively low share of the Web.
Meanwhile, there is little research exploiting Web information
extraction [5] to grow the amount of structured data in e-
commerce. In this context, Stoll et. al 2013 [6] showed that
only 7 ECS generate more than 90% of the product pages on
the Web. Manual inspection of ECS showed distinct patterns in
the HTML pages the shops generate. We expect those patterns
to be useful for designing ECS-specific extractors.
Therefore, we propose a novel approach to automatically detect
ECS. It operates on the ”id” and ”class” attributes of HTML
tags. After filtering these features with a white list, only
allowing those containing the strings ”product”, ”price” and
”cart”, we apply supervised classification algorithms. With this
approach, we can detect 6 ECS with a combined F1-score of
0.9.
The paper is structured as follows: In section two, we discuss
related work, in section 3, we describe our approach and pro-
vide implementation details. In section 4, we discuss the results
of the experiment. In section 5, we evaluate our approach on an
independent dataset and additionally on reference web shops.
We discuss limitations in section 6. Finally, we summarize our
findings in section 7.

II. RELATED WORK

There are two dimensions of work related to this paper.
The problem is situated in web page classification, whereas
the methods we use are in the supervised classification sub
field of machine learning.

A. Web Page Classification

1) Fundamental problems: According to Qi and Davison
2007 [7], who provide a encompassing survey on the topic,
Web page classification aims at assigning predefined category

4http://www.magentocommerce.com/
5http://www.prestashop.com/
6http://virtuemart.net/

2013 IEEE 10th International Conference on e-Business Engineering

978-0-7695-5111-1/13 $26.00 © 2013 IEEE

DOI 10.1109/ICEBE.2013.30

199



labels to Web pages. Web page classification can be divided
into three subtopics. (1) Subject classification aims at detecting
the topic of a Web page, e.g. ”sports”, ”culture”, ”business”.
(2) Functional classification tries to identify the role of a Web
page, e.g. ”Business home page”, ”Personal blog entry” or
”Web shop product page”. (3) Sentiment classification targets
opinions and attitudes conveyed with a page. As our approach
does not fit in any of the aforementioned subtopics, we propose
to suborder it as (4) generator classification, as ECS are the
generators of the Web pages of the shops.
A further dimension that characterizes Web page classification
is the number of classes. As we aim to detect 6 different ECS,
our research elaborates a multi-class problem. As only one
ECS can be assigned to a given page, we handle a single-label
classification. As classification, in our case, allows instances to
be either in a class or not, we target hard classification. Finally,
we operate on a flat classification problem, as the labels show
no hierarchical order.
Qi and Davidson regard web directories, search engines, ques-
tion answering systems and focused crawlers as important
applications of Web page classification, and mention Web
content filtering, assisted Web browsing and knowledge base
construction as less important. Our work can be classified best
to knowledge base construction, as our final aim is to gen-
erate additional structured data for e-commerce. In structured
data research, data expressed according to ontologies is also
commonly referred as knowledge base [8]. Finally, it can be
argued that the work should rather be ordered into web site
classification. We think the aforementioned criteria are suited
nevertheless, as we execute the classification by operating on
a single page, inducing our findings to the whole Web site. In
that context, we assume that a Web shop is always generated
by a single ECS.

2) Web page classification in e-commerce: Narrowed down
to the e-commerce domain, there are two non-scientific
sources that perform generator classification. Since 2011, (1)
Robertshaw conducts an analysis of the market share of ECS
semi-annually [9]. (2) Builtwith.com generates ECS statistics
on a daily basis [10]. As both sell the resulting data, they don’t
disclose their methods of detection. Stoll et al. 2013 [6] provide
a scientific overview about ECS market share on a product
page level and their impact on the adoption of structured data
on the Web.
Beside the classification of ECS, classification of different page
types is a significant problem when trying to extract structured
data in e-commerce. [6] identified (1) product pages, (2) cat-
egory pages and (3) arbitrary pages as fundamental categories
in the Web shop domain. To the best of our knowledge, there
is no scientific work on automatically labelling shop pages to
those categories.

B. Supervised classification

Supervised machine learning operates on problems where
a learning set with given labels is provided. The discrete label
problem is called classification, whereas the continuous label
problem is called regression [11]. The learning problem in
supervised classification is characterized by i feature vectors−→v i that are labelled by j classes cj . The goal is to label novel
vectors correctly, yielding high precision and recall [12].
Following Kotsiantis, figure 1 shows the general approach to
supervised machine learning. (1) The problem is defined. (2)

(1) Problem

(2) Identification of required data

(3) Data pre-processing

(4) Definition of training set

(5) Algorithm selection

(6) Training

(7) Evaluation with test set

(8) OK?

(10) Classifier

(9) Parameter 
tuning

yes

no

Fig. 1: Supervised Machine learning: General approach (fol-
lowing [11])

Then, the data needed for training the classificator is identified
and obtained. (3) Preprocessing is performed, eliminating e.g.
erroneous instances. (4) The data is split into learning set and
test set to prevent overfitting. Overfitting means to predict the
training set very well, but failing on unknown data. (5) A
suitable algorithm is selected. (6) The algorithm is trained on
the training data. (7) The performance is evaluated on the test
set. (8) If the results are satisfactory, the classifier can be (10)
implemented into a production system, if not, step 2 to 5 can be
reviewed. (9) Additionally, the parameters of the classification
algorithm can be tuned.

1) Vectorization: Tf-idf term weighting: As string features
we exploit can’t be used directly in classification algorithms,
they have to be transformed into numerical vectors. A common
approach to this task is counting the frequency of terms. But
against our aim, this would emphasize terms that occur often.
Contrary to that, we assume that a high discriminative power
emerges from the terms occurring rarely. This problem has
been addressed by the term frequency - inverse document
frequency (tf-idf) approach by Jones 1972 [13], which we use
to transform the string features to vectors. As word count in
an instance increases, the tf-idf value increases proportionally,
but is corrected by an offset reflecting the occurrence in the
aggregated instances.

2) Classification algorithms: In the next subsection, we
briefly introduce the selected classification algorithms. We also
introduce common abbreviations to refer to the algorithms
later.

1) NC The nearest centroid classifier is derived from
nearest neighbour methods. The centroid reflects the
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vector average of the class members [12]. Nitin
and Bhatia 2010 provide a survey about k-nearest
neighbours algorithms [14].

2) SGD Stochastic gradient descent improves the model
by subsequently analysing instances. It gains superior
performance with special optimization methods, that
allow early convergence. [15]. Recently, it has drawn
more attention by a publication of Zhang 2004, that
emphasised its power for large scale learning [16].

3) SVM Support-Vector Machines have been introduced
by Cortes and Vapnik 2005 [17]. SVMs operate on
maximising the margin between a separating high-
dimensional hyperplane and the given features.

4) DTREE Decision tree learning has originally been
introduced by Quinlan 1986 [18]. It aims at inducing
the trees by learning from examples. Decision trees
are a commonly used method in knowledge discovery
and decision support systems, as by asking a set of
questions, they provide an straightforward approach
to classify a pattern [19].

5) RF Random forests have been introduced by Breiman
1999 and belong to ensemble methods [20]. Ensemble
methods combine predictions of multiple classifiers to
raise performance. Instances are labelled by selecting
the mode output of multiple decision trees that oper-
ate on a random subset of features. These are selected
by choosing the most discriminative thresholds.

6) XTREE Extremely randomized trees [21] evolve the
approach of random forests. They mainly differ in
regard to a randomization of chosen attributes when
splitting a tree node.

III. METHODOLOGY, APPROACH & IMPLEMENTATION

A. Design rationales

When using machine learning based classification systems,
an important task for humans is feature generation. With the
initial hypothesis of targeting ”class” and ”id” values, the curse
of dimensionality of machine learning occurred. The curse of
dimensionality refers to the problem of needing a very big
learning set when a high-dimensional feature space is given,
originally introduced into statistics by Hughes 1968 [22]. We
first tried to reduce dimensions with manually crafted blacklists
to exclude noisy terms, e.g. those that are related to document
styling, and automatically filtering terms of very high and very
low frequency. While this yielded little significant improve-
ments, it showed that features filtered by a short domain-
specific white list to be (a) sufficient to achieve significant
classification performance, and (b) to be a good measure to
reduce the curse of dimensionality.

B. Generating datasets and preprocessing

1) Classificator design dataset: To generate the learning
data, we used the sitemaps [23] downloaded by Stoll et al. 2013
[6]. We selected CS-Cart, Magento, Prestashop, Virtuemart,
XT-Commerce and Zencart, as they provided a significant
amount of training data, and were the most important ECS
in terms of product pages, according to [6]. We provide an
overview of the instances per ECS in the learning set in table
1. As a first step, of all available URIs, we eliminated those
containing the string ”blog”, as they would dilute the data,

System Instances

CS-Cart 460
Magento 234

Prestashop 2205
Virtuemart 431

XT-Commerce 684
Zen-Cart 458

Sum 4472

TABLE I: Learning set instances by ECS

and those containing ”.png” / ”.jpg”, as images are out of the
focus.
To maximize the entropy of HTML pages, we randomly
selected three URIs per site, downloaded them and rinsed
the resulting directory excluding files smaller than 2KB, as
by manual inspection, those were most often error pages. A
learning set of 4472 HTML files remained.

2) Additional evaluation dataset: In addition to the usual
splitting of the data into learning set and training set, we
evaluated our results on entirely different data, which was ex-
tracted from GR-Notify [24]. GR-Notify is a Web service that
allows Web shop owners to register their sites after they have
implemented GoodRelations. The shop extensions for Magento
and Virtuemart automatically submit data. Additionally, a front
end to manually submit Web shops exists. By default, the
generating ECS is included in the submission. Therefore,
gr-notify provides a highly accurate external evaluation set
for the trained classifier. From the gr-notify data, we could
download 3461 HTML files labelled with Magento, Prestashop
and Virtuemart. Other systems were not included, as they were
not significantly represented in the GR-Notify dataset.

C. Building a classifier

1) Feature generation & white listing: We assume that
pages generated by distinct ECS show patterns in the values
of HTML tag attributes ”class” and ”id”. For instance, we
spotted Magento generating often <H1 id=”product-name”>,
or Prestashop <img class=”pdct-img-main”>.
Meanwhile, on the given data, this approach generates a feature
set with a dimensionality in the lower 105 range. As introduced
in section 3.A, this results in limitations to the computability.
There exist automated methods to reduce the dimensions in a
learning problem, e.g. PCA, Pearson 1901 [25].
However, we chose a domain-specific white list approach to
mitigate the problem. We reduced the feature set of attributes to
only those which contain, but do not match, the strings ”price”,
”product” and ”cart”. We generated the white list by starting
with a manual collection of sensible terms, iteratively reducing
those and reviewing the resulting classification performance.
The final three terms showed to be of high discriminatory
power. In table 2, we show the recallbase related to the 4472
downloaded files after applying the white list to the feature
sets ”class”, ”id” and the combination ”class+id”, and the
number of instances. The main point of not choosing PCA or
related methods is occam’s razor [26]. We achieve sufficient
performance with this compact approach, instead of integrating
another large scale method into our model.

2) Classification algorithms: We split the data into a 60%
learning set and 40% test set. We trained the six classification
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class id class+id

recallbase 0.849 0.811 0.875
Instances 3798 3628 3915

TABLE II: Remaining recallbase after white list filtering

Learning Set

Feature generation

Whitelisting

Null filtering

Fit F1

Base recall

Training set 0.6 Test set 0.4

RF

SVM SGDNC

DTREE XTREE

F1all

idclass class+id

classification 
algorithms

Fig. 2: Overview of experimental design

algorithms (NC, SGD, SVM, DTREE, RF, XTREE) discussed
in section 2. Combining them with the three different feature
sets resulted in an experiment size of 18 different combi-
nations. It is important to state that for ECS detection, we
analysed only one HTML page. We compile our experimental
design in figure 2.

3) Performance metric: To asses the final performance
of the feature set / classifier combination, we modified the
common F1-score integrating the loss linked with feature
generation.

F1all = 2 ∗ precision ∗ (recallbase ∗ recallclassifier)

precision+ (recallbase ∗ recallclassifier)

D. Implementation

The experiment was implemented in the Python7 program-
ming language. The learning set was generated by a small
script that drew sample URIs based on the sitemaps of Stoll
et al. 2013 [6] and downloaded those asynchronously with the
library grequests8.
Vectorization, classificator application and evaluation has been
realized with the library Scikit Learn 2011 [27]. The features
were generated by applying regular expressions to the HTML
files yielding lists of all values of the attribute in regard. We
then excluded the instances that yielded no features after white
list filtering. Before training and testing on the algorithms, to
prevent overfitting, each dataset was split by 0.6 / 0.4 into train
and test set.

7http://www.python.org/
8https://github.com/kennethreitz/grequests

XTREE RF SGD DTREE NC SVM

class+id 0.902 0.897 0.893 0.886 0.81 0.634
class 0.88 0.868 0.859 0.865 0.809 0.643

id 0.856 0.854 0.852 0.849 0.747 0.639

TABLE III: F1all-score for 18 feature / algorithm combinations

The results have been visualized with matplotlib [28]. Aside
from the learning set generator, which did not benefit from an
interactive environment, we employed iPython notebook [29]
to prototype in agile manner. Additionally, the pandas library
has been used to manipulate matrix data [30].
We finally implemented shopdetector9, a public Web interface
to the classificator. It is built on the Web framework flask10

and runs on a free-tier AWS EC211 instance. It provides 3 in-
terfaces. (1), there is a REST [31] interface, (2) there is a form
to enter the URI of the shop and (3) there is a bookmarklet
which enable a straightforward usage of the service without
leaving the browsing context. Putting the classificator on the
Web was a tricky task, as Scikit Learn has a comprehensive list
of dependencies that needed to be loaded into the Web server
context. As a result, server deployment took much longer than
implementing the app locally. After time-consuming trials on
Apache HTTP Server12, we successfully deployed on Nginx13

[32]. For future work, we plan to automate server setup
with the puppet14 configuration management system. The web
service is based on the Class-ID / XTREE classifier. We
introduced a probability threshold of at least 0.6 to cut out
predictions that were to ambiguous, providing the user of the
service with a warning.
To set the later discussed speed results into perspective, a 2012
Mac Mini equipped with a quad-core 2.3 GHz Core I7 CPU,
8 GB of RAM and a SSD hard disk was used, scoring a 32-bit
geekbench15 of 10823.

IV. RESULTS

A. Featureset & Algorithm performance

Table 3 shows the F1all-score introduced in section 3.2
for the 18 feature / algorithm combinations. We additionally
provide a heat map in figure 3.
We can see that the combination ”class+id” performs best. That
is mainly due to the highest base recall we showed in table
1, as the top algorithms did not yield significantly different
performance. Applied to ”class+id”, XTREE, RF, SGD and
DTREE perform similarly well around 0.9, while XTREE
shows the best results. NC shows significantly worse results
of 0.81, and SVM performs worst with 0.634. This result is
in agreement with the current state of the art in classification
research, where ensemble algorithms yield the best results.

B. Speed

Additionally, we analysed the computational complexity of
the feature / algorithm combinations. The results in seconds

9http://www.datacommerce.org/shopdetector
10http://flask.pocoo.org/
11http://aws.amazon.com/de/free/
12http://httpd.apache.org/
13http://wiki.nginx.org/Main
14https://puppetlabs.com/
15http://www.primatelabs.com/geekbench/
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Fig. 3: Heatmap of F1all-score for 18 feature / algorithm
combinations

XTREE RF SGD DTREE NC SVM

class+id

class

id

NC SGD DTREE RF XTREE SVM

id 0.119 0.131 0.596 1.461 1.893 13.093
class 0.155 0.16 0.859 2.173 3.069 18.499

class+id 0.23 0.252 1.158 3.086 3.928 30.687

mean 0.168 0.181 0.871 2.24 2.963 20.76

TABLE IV: Time elapsed (s) for 18 feature / algorithm
combinations

NC SGD DTREE RF XTREE SVM

id

class

class+id

Fig. 4: Heatmap time elapses for 18 feature / algorithm
combinations

are shown in table 4. We measured the time for fitting and
generating the scores of a combination.
Regarding elapsed time in terms of feature sets, we see that the
bigger ones took exponentially longer to compute. Regarding
the algorithms, NC and SGD constitute a very fast group with
means 0.168s and 0.181s. While DTREE is also relatively fast
with 0.871s, RF and XTREE form a second, slower group with
2.24s and 2.963s. SVM is about two magnitudes slower than
the fastest group. We additionally provide a heatmap for this
analysis in figure 4. To adjust it to the same colors as above,
we first normalized the elapsed times and then subtracted from
1. A theoretical discussion of the computional complexity of
the underlying algorithms is out of the scope of this paper.

C. Performance on different clusters

We additionally provide the classification report of the
feature / algorithm combination with the highest performance,
”class+id” / XTREE based on recallclassifier in table 5. In terms
of precision, CS-cart, Prestashop, xt-Commerce and Zen Cart
can be detected with results of 1.00/0.99. Magento can be
detected significantly worse with 0.86, and Virtuemart worst
with 0.77. In recall, CS-Cart and Prestashop again produce a
very good score of 0.99, while the other ECS move ± 0.01
around 0.93. This results in 4 groups of F1-scores: CS-Cart
and Prestashop with 1.00 and 0.99, xt-Commerce and Zen Cart

precision recallclassifier F1classifier

CS-cart 1.00 0.99 1.00
Magento 0.86 0.94 0.90

Prestashop 0.99 0.99 0.99
virtuemart 0.77 0.92 0.84

XT-commerce 0.99 0.92 0.96
Zen-Cart 0.99 0.93 0.96

avg / total 0.97 0.97 0.97

TABLE V: Classification report of ”class+id” / XTREE clas-
sifier on distinct ECS

NC SGD DTREE RF XTREE SVM

Speed +++ ++ + o o - - -
Performance - ++ ++ ++ +++ - -

TABLE VI: Consolidated review on speed / performance of
used algorithms

with 0.96, Magento with 0.90 and Virtuemart with 0.84. An
average F1-score of 0.97 could be measured.

D. Consolidated algorithm review

We conclude the results with a consolidated review of
strengths and weaknesses of the different classification algo-
rithms in table 6, regarding performance and speed. NC is
very fast, but does not provide competitive results. SGD and
DTREE are fast and perform well. RF and XTREE provide
a little more performance, but are significantly slower. SVM
seems to be a bad choice for our problem.

V. EVALUATION

A. Evaluation on gr-notify dataset

We evaluated the ”class+id” / XTREE classifier discussed
in section 4 on the gr-notify [24] dataset, consisting of Ma-
gento, Prestashop and Virtuemart instances. In table 7, we
provide the base recall after applying the white list. We can see
that the results are significantly worse than those in the learning
set. This is because we only loaded the root URIs of the given
sample, mostly excluding product pages, that the white list
was tailored to. A classification report is provided in Table
8. Magento and Prestashop performed good with f1-scores of
0.94 and 0.97, while Virtuemart only yielded 0.79. An average
F1-Score of 0.94 could be measured based on recallclassifier.
The results show that the classifier performs nearly similarly
well on a total independent dataset, even when analysing the
root URI only. Based on the proposed formula in section 3.3,
the classifier yields a recallall-score of 0.73.

B. Evaluation on targeted ECS reference shops

We provide an evaluation of the classification performance
on ECS reference shops the system has been trained for. We

class id class+id

recallbase 0.63 0.55 0.64
Number of instances 2831 2461 2864

TABLE VII: GR-Notify [24] evaluation: Remaining recall after
white list application
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precision recallclassifier F1classifier

Magento 0.95 0.92 0.94
Presta 0.98 0.95 0.97

Virtuemart 0.85 0.74 0.79

avg / total 0.96 0.93 0.94

TABLE VIII: GR-Notify [24] evaluation: Classification report
of ”class+id” / XTREE classifier

discuss sources of reference shops and results in the following
section. As described in section 3.D, we classified results that
yielded a probability below 0.6 not to belong to the targeted
ECS.

1) CS-cart Acquiring the URIs of 10 reference CS-
Cart stores was possible by checking the portfolios
of specialized agencies. All 10 CS-Cart shops have
could be classified correctly.

2) Magento Magentoshopping.de16 is a german portal
that listed 256 Magento shops as of 04/23/2013.
We picked the 10 shops that were listed to be the
newest for the evaluation. 8 shops could be detected
correctly. One shop had been erroneously submitted
to the portal, as manual checking showed it was
generated by ubercart17.

3) Prestashop To acquire the Prestashop reference sites
we consulted the prestashop.com showcases18. Again,
we extracted the 10 URIs that were listed most
recently and checked them with the classificator API.
This resulted in 7 correctly detected URIs and 3 URIs
that did not meet the treshold.

4) Virtuemart Virtuemart provides a collection of live
stores19. We picked again the 10 shops listed most
recently. Of those, four have been labeled correctly
above the treshold. All others were below. We explain
the poor performance in this part of the evaluation as
a result of the weak technical impression Virtuemart
showed, and with the non-curated character of the
data source. As it is principally possible to add
arbitrary sites, we expect it to be polluted by sites
submitted only for SEO benefits.

5) XT-Commerce To assess XT-Commerce, we used
the URIs referred by the official XT-Commerce web-
site20. Of 10 extracted URIs, three could be detected
correctly as XT-Commerce. 5 URIs fell below the
threshold, the remaining two were classified wrong.
We interpret the poor results to be rooted in a
severe overfitting in this specific ECS, and by the
strong template customization of the showcase XT-
Commerce shops.

6) Zen-Cart For Zen-Cart we consulted the apparel sub-
category of the official showcase site21. The results
were the worst in this part of the evaluation. One
URI could not be resolved at all, and the 9 remaining
URIs did not pass the threshold. We think this is

16http://www.magentoshopping.de
17http://www.ubercart.org/
18http://www.prestashop.com/de/showcase
19http://virtuemart.net/features/live-stores/16
20http://www.xt-commerce.com/
21http://www.zen-cart.com/showcase.php?do=showcat&catid=1

True pos. False pos. False neg. Errors

cs-cart 1.000 0.00 0.00 0.000
mage 0.800 0.00 0.10 0.100
presta 0.700 0.00 0.30 0.000

virtuemart 0.400 0.00 0.60 0.000
xt-commerce 0.300 0.20 0.50 0.000

zen-cart 0.300 0.10 0.50 0.100

mean 0.583 0.05 0.35 0.017

TABLE IX: Evaluation on targeted ECS reference shops -
classification results

Precision Recall F1-score

cs-cart 1.000 1.000 1.000
mage 1.000 0.800 0.889
presta 1.000 0.700 0.824

virtuemart 1.000 0.400 0.571
xt-commerce 0.600 0.375 0.462

zen-cart 0.750 0.375 0.500

mean 0.892 0.608 0.708

TABLE X: Evaluation on targeted ECS reference shops -
precision, recall, F1-score

related to the very dubious impression most Zen-Cart
shops left, as many of those sold imitations of brand
products. The poor technical realization might affect
the patterns the templates spot. Additionally the low
number of learning instances must have resulted in
overfitting.

We see the the mixed result of this part caused by two
factors. First, shops that miss technical sophistication generally
suffer from wrong classification. At the same time, we expect
the labelled URIs of those ECS to be way less accurate, as
listings often are crowd-curated. Second, result differences on
test set and on this data hint that our approach tends to overfit
on specific clusters. We discuss this potential shortcoming in
the limitations section 7. We provide an overview of the results
of this section in table 9 and 10. Table 9 provides the relative
instance frequency in each result group. Table 10 provides the
achieved precision, recall and F1-scores. Overall, a precision
of 0.892, a recall of 0.608 and F1-score of 0.708 could be
measured.

C. Evaluation on non-targeted ECS reference shops

We additionally conducted a performance analysis for ECS
reference sites the classificator was not trained for on the
systems 3DCart, Oxid esales, and Volusion. In this experiment,
by definition there exist only true negatives, false positives
and errors (if the page could not be fetched e.g.). We can’t
compute precision and recall based on those figures, but the
true negative rate. The true negative rate for 3DCart is 0.6, for
Oxid esales 0.875, and 1.0 for Volusion. Again, we interpret
the result aligned to the low-end impression 3Dcart conveyed
on the system’s home page and in the associated shops. We
compile our results in table 11.

D. Evaluation on non-shop sites

We additionally evaluated the predictive performance of the
system on non-shop sites. As test sample we used 20 randomly
selected sites from the Alexa Top 1M URIs list and manually
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True neg. False pos. Errors True neg. rate

3DCart 0.600 0.400 0.000 0.600
Oxid esales 0.700 0.100 0.200 0.875

Volusion 1.000 0.000 0.000 1.000

mean 0.767 0.167 0.067 0.825

TABLE XI: Evaluation on non-targeted ECS reference shops

filtered shops. We then submitted the URIs to the Class+ID /
XTREE classificator. Beside one 404, 19 URIs did not meet
the threshold, and were labeled correctly as true negatives.
This result confirms our approach also works well for non-
shop-sites.

VI. LIMITATIONS & OUTLOOK

1) Limited features: We did not exploit further features that
might raise the performance, for instance HTTP header [33]
or tag frequency in the HTML document. In that context, we
propose that computing graph properties of the HTML trees
might be a promising way to design classificators. We don’t
think that our focus on the limited features is a problem, as the
classificator matches our performance needs for the outlined
extractor. From our point of view, it is already a contribution
to gain an additional low percentage of market coverage.

2) Biased learning set: A severe bias might have been
introduced by choosing a learning set that has been labelled
automatically. For future work, we aim at collecting a curated
dataset of Web shop URIs labeled by ECS. We assume that this
would raise the performance of the classificator significantly.
A fundamental principle in machine learning is that having
more data is of higher importance to the performance that the
used algorithm [34]. We think that this is not critical, as we
yield sufficient results for the projected use. Additionally, one
might argue that a bias is introduced by the learning not evenly
distributed across the different ECS, see Table 1. At the same
time, taking into account all labelled pages available yielded
the best overall classification performance.

3) Parameter tuning: Additional classificator performance
could have been generated by tuning the parameters of the
algorithms. We decided not to perform parameter tuning, as
a preliminary tuning of the best classifier yielded only little
better F1-scores. These get further diminished by the recallbase

and thus didn’t seem critical for this prototype. Meanwhile, in
a production system, parameter tuning should be performed
as soon as the final algorithm is chosen, e.g. based on our
heuristic provided in section 4.4. We assume especially that
the poor SVM results are due to missing parameter tuning.

4) White list generation: It is possible that the heuristically
generated white list may not be the optimal one. Formally
approaching this problem could be future work. Compact
approaches seem to be promising in comparision to full scale
methods like PCA.

5) Detecting ECS by only analysing one HTML page:
The performance of the classificator could be further risen by
considering multiple HTML pages per web site. Again, for the
projected use case, the yield rate is satisfactory.

6) Overfitting: Section 5.B showed that the system tends
to overfit on some ECS. We think this problem could be

addressed by additional learning data. The procurement of
high-quality labelled ECS is a non-trivial task and could serve
as future work.

7) Threshold: We heuristically set the threshold to invali-
date predictions to 0.6. Future work based on the evaluation
could provide formal method to set the figure.

VII. CONCLUSION

We designed an approach of ECS detection based on
supervised classification and a filtered set of HTML attribute
values. It is capable of detecting 6 different e-commerce
systems by analysing only one random HTML page of a Web
shop. Taken into account the loss in recall when not able
to generate any features, it shows an F1-score of 0.9. An
extensive evaluation fundamentally confirmed the results. We
provided an analysis of the speed of the different algorithms,
the performance on specific ECS, and a heuristic to choose a
classification algorithm for the task at hand. We additionally
implemented a Web frontend and API for the public use of the
system.
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