
Semi-automated Structural Adaptation
of Advanced E-Commerce Ontologies

Marek Dudáš1, Vojtěch Svátek1, László Török2,
Ondřej Zamazal1, Benedicto Rodriguez Castro2, and Martin Hepp2

1 University of Economics Prague, Nám. W. Churchilla 4, 13067 Praha 3, Czech Rep.
{xdudm12|svatek|ondrej.zamazal}@vse.cz

2 Univ.der Bundeswehr Munich, W.-Heisenberg-Weg 39, 85579 Neubiberg, Germany
{laszlo.toeroek|benedicto.rodriguez|martin.hepp}@unibw.de

Abstract. Most ontologies used in e-commerce are nowadays taxonomies
with simple structure and loose semantics. One exception is the OPDM
collection of ontologies, which express rich information about product
categories and their parameters for a number of domains. Yet, having
been created by different designers and with specific bias, such ontolo-
gies could still benefit from semi-automatic post-processing. We demon-
strate how the versatile PatOMat framework for pattern-based ontology
transformation can be exploited for suppressing incoherence within the
collection and for adapting the ontologies for an unforeseen purpose.

Key words: ontology, e-commerce, GoodRelations, transformation, on-
tology pattern, linked data

1 Introduction

The idea that well-designed, structurally rich ontologies would allow to partially
automate e-commerce operations has been around for years [1]. Nevertheless,
even nowadays, most ontologies exploited in this field are plain taxonomies with
imprecise semantics. Proposals for sophisticated modeling remain at the level of
academic prototypes, or, at most, are used in closed B2B settings [6].

The GoodRelations ontology [3] has then been conceived, as an attempt to
balance expressiveness and practical usability, with size comparable to popular
linked data vocabularies1, OWL ontology language2 expressivity and stress on
favorable learning curve thanks to a cookbook with a number of recipes.3 As ‘ver-
tical’ extensions to GR, ontologies for specific product/service categories then
started to be developed, most recently within the Ontology-Based Product Data
Management (OPDM) project.4 The backbone of all ontologies is the taxon-
omy of product/service types, complemented by taxonomies of product/service
features and their enumerated values. This family of ontologies already enjoyed

1 http://lov.okfn.org/dataset/lov/
2 http://www.w3.org/TR/owl2-overview/
3 http://wiki.goodrelations-vocabulary.org/Cookbook
4 http://www.opdm-project.org/

2 Marek Dudáš et al.

industrial adoption, such as the car sales ontology used by a major automotive
manufacturer.5

In this paper we focus on two aspects of such product ontologies for which
further enhancement is possible. First, the rapid pace of creation of the on-
tologies and involvement of multiple designers in parallel occasionally leads to
incoherence in modeling patterns and naming conventions, both within a single
ontology and across a set of them. Second, some of their features are compro-
mises between the best practices for publishing linked data [2] and somewhat
different requirements imposed by the e-commerce and web engineering worlds,
given they are to be used in direct integration with web-based product catalogs.
Therefore they need to be adaptated in order to be used in a ‘canonical’ linked
data setting. In this paper, we label the first issue as intrinsic incoherence of an
ontology, and the latter as export-based extrinsic incoherence (as the ontology is
incoherent with the desired target structural style and thus requires adaptation).

As either kind of structural adaptation potentially involves a wide scope of
restructuring and renaming operations, it can benefit from application of a user-
friendly ontology transformation framework. Such framework has been recently
developed under the name of PatOMat [9, 11]. In the rest of the paper we first
describe the material, i.e., the GoodRelations ontology and the product ontolo-
gies based on it (Section 2). Then we present the incoherence problems of both
types discovered in the product ontologies (Section 3). Next, the principles of
the PatOMat framework and its user interfaces are briefly reviewed (Section 4),
and its application on the OPDM ontologies is described (Section 5). Finally,
related research is surveyed (Section 6) and the paper is wrapped up (Section 7).

2 GoodRelations and Product Ontologies

GoodRelations (further GR) is a generic ontology for e-commerce, which offers
conceptual elements to capture facts that are most relevant for exchanging arbi-
trary goods and services. The core model revolves around the abstraction that
an agent offers to transfer certain rights related to a product or service [3]. This
model is independent of a particular e-commerce domain, since the agent can
be any commercial entity making the offer, and rights transferring can range
from simple sale to rental or leasing. GR includes generic conceptual elements
for products and services and their properties (including prices, delivery or war-
ranty conditions etc.), but no domain-specific product classes or taxonomies.

A premier use case for GR is adding semantic annotation to of e-commerce
web sites. This allows search engines, novel mobile applications or intelligent
browser extensions to analyze and interpret web page semantics at a granularity
that would have been otherwise too costly or unreliable. Following this direction,
elements of GR have recently been integrated (as officially recognized extension)
into Schema.org, the unified schema for web page content annotation designed by
the leading search engine companies. The two schemas are rather complementary,

5 http://www.w3.org/2001/sw/sweo/public/UseCases/Volkswagen/

Semi-automated Structural Adaptation of Advanced E-Commerce Ontologies 3

as Schema.org has broader coverage of domains (including, e.g., news or recipies)
while GR goes much deeper specifically for the e-commerce domain.

Aside the website-level application, there are also domain-specific extensions
of GR that can be used within e-commerce business information systems as a
common data schema that all software services support. Product data avail-
able in many systems is often unstructured or incomplete. As sophisticated
automated business processes require precise, highly structured data, they are
likely to benefit from ontologies capturing data about products from particu-
lar domains. OPDM ontologies, primarily designed to fulfil this need, extend
a subset of GR as in part (b) of Fig. 1: domain-specific product classes are
subclasses of gr:ProductOrService, product properties are subproperties of
gr:quantitativeProductOrServiceProperty or its ‘quantitative’ or ‘datatype’
counterparts,6 and a few generic properties such as color, dimension or weight
are directly reused from the GR ontology. The ontologies are self-contained, and
capture the most frequently occurring properties of each particular product type.

Fig. 1. OPDM ontologies as domain-specific extensions of GoodRelations

3 Incoherence Problems in OPDM ontologies

3.1 Incoherence Types Considered

When an OWL ontology is being developed, there is often more than one op-
tion how to model a specific concept or structure, due to high expressiveness of
the language. Modeling incoherence may thus arise when such modeling options
differ for concepts/structure of similar nature. The fact that OPDM ontologies
are all grafted upon the GR ontology somewhat alleviates this problem. Never-
theless, there is still space for incoherence; both at structural level, e.g., using a
datatype property instead of object property, or at the level of naming conven-
tions, such as arbitrarily switching between synonymous lexical constructs.

6 We omit their full names for typographic reasons – excessive length.

4 Marek Dudáš et al.

Another way of incoherence classification is according to the situation in
which a particular part of an ontology is considered ‘incoherent’. Due to the
large number of OPDM ontologies and involvement of multiple designers, intrin-
sic incoherence may easily occur, which is a term we suggest for unintentional
heterogeneous modeling occurring either within a single ontology or within a col-
lection of ontologies typically presented together (such as the OPDM collection).
On the other hand, if the ontologies are to be used outside the original context,
it is likely that one will run into what we call export-based extrinsic incoherence.
Finally, we could also consider import-based extrinsic incoherence, which occurs
when legacy ontologies have to be adapted to a ‘canonical’ modeling style (here,
the style pre-supposed by GR).7 In the rest of this section we discuss examples
of different types of incoherence in the context of OPDM ontologies.8

3.2 Intrinsinc Incoherence

This incoherence category is the most critical, since it may impacts any subse-
quent processing/use of the ontologies. Note that OPDM ontologies are to be
filled with large numbers of instances using automated data harvesting methods;
this process is difficult if intrinsic incoherence has not been resolved first.

Intrinsic structural incoherence. One example of intrinsic structural incoherence
is related to modeling the support of various media data types (e.g., GIF, JPEG,
AVI etc.) available in an electronic device. There are several ontologies in the
OPDM project that cover the described concept (ontologies of computers, cam-
eras, bluray players, portable media players etc.), and as the OPDM ontologies
are not modular and are designed to be used independently, the same concept
has been designed separately in each ontology. In most of the ontologies there
is a class MediaFormat, with instances JPEG, GIF, AVI etc., as well as an ob-
ject property playbackFormat, which has the class MediaType as its range. In
one of the ontologies, however, a different approach is used: there is a boolean
data property for each of the media data types. So, for example, the fact that a
hypothetical portable media player supports AVI would be expressed as player
playbackFormat AVI in the former case and as player AVI true in the latter.
We will refer to this incoherence pattern as to ‘boolean vs. instance’.

A similar kind of intrinsic structural incoherence occurred in the case of
modeling a property representing port availability in an electronic device. One
approach used was to create a boolean data property for each port that might
be present on a device, while another was to create an object property for
each type of port, which also allows to specify the number of ports of the
specified type. The object property has been created as a subproperty of

7 Pre-cursor work on resolving import-based extrinsic incoherence (though not labeled
by this term) at a generic level – with ‘canonical’ modeling defined by ontology
content design patterns – is described in [12].

8 In all examples, local entities from the individual OPDM ontologies are without
prefix, while the GR ontology entities are presented with their usual gr prefix.

Semi-automated Structural Adaptation of Advanced E-Commerce Ontologies 5

gr:quantitativeProductOrService property with gr:QuantitativeValue as
its range. The value of the property is then an instance of gr:QuantitativeValue
with the number of ports specified through the gr:hasValue property. The same
‘functionality’ could have been achieved using an integer-valued data property,
but the object property approach is more in accordance with the GR recommen-
dations. Consequently, to model the availability of an HDMI port, according to
the first approach we would have a boolean data property called simply hdmi,
with usage laptop hdmi true. According to the other approach we would have
an object property numberOfHdmiPorts used with an intermediate blank node:

laptop numberOfHdmiPorts bnode001.

bnode001 hasValue ’2’.

We will refer to this incoherence case as to ‘boolean vs. integer’.

Intrinsic naming-level incoherence. The property representing the port num-
ber is also an example of an intrinsic naming-level incoherence. Most of the
multiple ‘port number property’ names in OPDM ontologies follow the pattern
numberOf[portType]Ports, but some are named according to the pattern [port-
Type]PortQuantity. While this kind of incoherence is probably less severe than
the structural cases above, its consequences might still be unpleasant, especially
if the incoherence arises within the same ontology. We will refer to this incoher-
ence case as to ‘infix vs. prefix’, as the variable modifier of the name is either in
infix or prefix position.

3.3 Extrinsic Structural Incoherence

An example of extrinsic structural incoherence comes from considerations of us-
ing OPDM ontologies in an ‘orthodox’ linked data environment. A very relevant
opportunity for advanced product ontologies is, for example, their use by an
application for public contracts management. Efficient matchmaking of calls for
tenders and actual tenders (i.e., business offers) could be achieved by specify-
ing the categories and parameters of sought/offered commodities in terms of
such ontologies. The Public Contracts Ontology9 designed within the EU LOD2
project, as well as the processing tools that provision RDF data according to
this ontology [4], strictly adhere to the linked data principles.

Linked data principles suggest using object properties rather than data prop-
erties, since the use of object properties allows for explicitly referring to resources
(ontological instances) from external datasets. The OPDM ontologies have not
been designed so as to be a part of the linked data cloud. Instead, each OPDM
ontology is meant to be used independently, and barriers for their usage by
practitioners (unfamiliar with semantic web technologies) is lowered as much as
possible, hence most of the properties are datatype properties. This makes them
easy to populate with ‘instances’ in the form of literals; however, in the linked
data environment, the benefits of interlinking could not be exploited.

9 http://code.google.com/p/public-contracts-ontology/

6 Marek Dudáš et al.

4 PatOMat Framework for Ontology Transformation

The central notion in the PatOMat framework10 is that of transformation pattern
(TP). A TP contains two ontology patterns (the source OP and the target OP)
and the description of transformation between them, called pattern transforma-
tion (PT). The representation of OPs is based on the OWL 2 DL profile, except
that placeholders are allowed in addition to concrete OWL entities. An OP con-
sists of entity declarations (of placeholders and/or concrete entities), axioms and
naming detection patterns (NDP); the last capture the naming aspect of the OP,
which is important for its detection. A PT consists of a set of transformation links
and a set of naming transformation patterns (NTP). Transformation links are
either logical equivalence relationships or extralogical relationships (holding be-
tween two entities of different type, thus also called ‘heterogeneous equivalence’).
Naming transformation patterns serve for generating names for target entities.
Naming patterns range from passive naming operations, such as detection of a
head noun for a noun phrase, to active naming operations, such as derivation of
verb form of a noun. Syntactically, the patterns are expressed according to an
XML schema11 with elements such as <op1>, <op2> (for the source and target
pattern, respectively) and <pt> for pattern transformation; deeper in the hier-
archy are the <placeholder>, <axiom> and <ndp> elements (for components of
OPs) and <eq>, <eqHet>, <ntp> elements for logical equivalence, heterogeneous
links and NTPs, within PT). However, the patterns needn’t be edited manually,
as a graphical editor is available for their authoring.12

The framework prototype implementation is available either as a Java library
or as three RESTful services.13 The Java library is used by the GUIPOT tool14

(demonstrated in Section 5) and other transformation GUIs. The whole trans-
formation is divided into three steps that correspond to the three core services:

– OntologyPatternDetection service takes the TP and an ontology on input,
and returns the binding of entity placeholders on output, in XML. The naming
detection patterns of the source OP are first processed. As a result of applying
the naming aspect, bound placeholders arise that are placed to the FILTER
component of a SPARQL15 query (generated according to axioms in the source
OP) before its execution.

– InstructionGenerator service takes the binding of placeholders and the TP on
input, and returns transformation instructions on output.

– OntologyTransformation service takes transformation instructions and the
original ontology on input, and returns the transformed ontology on output.

10 [11] provides details about the initial version of the framework, [9] about the user-
oriented tools, and at http://owl.vse.cz:8080/tutorial/ there is a fully-fledged
tutorial for the current version.

11 http://nb.vse.cz/~svabo/patomat/tp/tp-schema.xsd
12 http://owl.vse.cz:8080/tpe/
13 All accessible via the web interface at http://owl.vse.cz:8080/.
14 http://owl.vse.cz:8080/GUIPOT/
15 http://www.w3.org/TR/rdf-sparql-query/

Semi-automated Structural Adaptation of Advanced E-Commerce Ontologies 7

The framework has already been used in multiple use cases, such as:

– Adaptation of the style of an ontology to another one to which it is to be
matched [11]

– Adaptation of the style of a legacy ontology to a best-practice content pattern
being imported into it [12]

– Repair use cases, including downgrading of an ontology to a less expressive
dialect of OWL [10] or entity naming canonicalization [13].

OPDM ontologies represent a challenging mix of problems that have already
been touched in the previous use cases. Notably, intrinsic incoherence resolution
is related to the matching use case, except that the goal is not to model the same
subject proper, but structures with similar semantics. Export-based extrinsic
incoherence resolution is related to the repair use cases, since OPDM ontologies
are no longer ‘best-practice’ when put into the linked data context. Finally,
import-based extrinsic incoherence resolution would be related to the content
pattern import use case (this role being played by the GR ontology here).

5 Pattern-Based Transformation of OPDM Ontologies

5.1 Selected Transformations in Depth

In this section we present examples of transformation patterns and their appli-
cation to resolve some of the previously described incoherence cases.

Transformation for ‘boolean vs. instance’ The first incoherence case requires
a transformation of boolean data properties to instances of a new class called
MediaFormat, while also adding a property such as playbackFormat, whose
range is this class. It can be achieved using the transformation pattern in Fig. 2.16

The source pattern thereof fits all boolean (as specified in the first axiom) sub-
properties of gr:datatypeProductOrServiceProperty (specified in the second
axiom), of which those representing media types have to be selected (currently,
manually). The rest of the transformation is performed automatically accord-
ing to the target ontology pattern and the pattern transformation parts of the
transformation pattern, as shown below. The role of the two axioms concerning
annotations (labels and comments) is to transfer them to the target transformed
ontology. The purpose of the last axiom in the source pattern is to keep the infor-
mation about the domain of the transformed data property (i.e., some product
class) in the placeholder ?pc. It will be used to set the domain of the newly cre-
ated object property playbackFormat, whose range will be the newly created
MediaFormat class; its instances arise from the transformed data properties. All
the datatype properties ?m selected in the previous step are transformed into
instances ?OP2 m of class MediaFormat, which is created as a new entity. The se-
lected properties ?m are removed from the ontology and replaced with instances

16 The | symbols are not part of the code: they only mark elements that are referred
to in the explanatory text.

8 Marek Dudáš et al.

?OP2 m. Axioms describing ?m are also removed except labels and comments (as
mentioned above), which are connected to the newly created instances ?OP2 m.
The playbackFormat object property (represented by placeholder ?OP2 p) is cre-
ated, its domain set to ?OP2 pc – the domain of the transformed data property
– and its range to ?OP2 C – the newly created MediaClass.

Transformation for ‘boolean vs. integer’. This kind of incoherence is resolved by
transforming boolean data properties selected by the user into object properties
that are subproperties of gr:quantitativeProductOrServiceProperty. The
pattern is aimed at the described case of ‘computer port’ properties. Note that
the target is the same as in the “infix vs. prefix” naming-level incoherence case
from Section 3. The pattern17 also has the source part structurally similar to the
above pattern for ‘boolean vs. instance’. A naming transformation is required
that adds the numberOf prefix and Ports suffix to the name of the port:

<ntp entity="?OP2_m">numberOf+?m+Ports</ntp>

Transformation for ‘data vs. object property’. Data properties18 are transformed
into subproperties of either gr:qualitativeProductOrServiceProperty or its
‘quantitative’ counterpart, depending on the nature of the property, to keep the
ontology GR-compliant. As the transformation pattern framework does not sup-
port the if/then/else construct, more than one transformation pattern is needed
for this: at least one for qualitative and one for quantitative properties. The
qualitative/quantitative character of a property can be recognized from its range
(string for qualitative and integer or float for quantitative) – but in the OPDM
ontologies, string-valued data properties are sometimes quantitative. To be sure
that the transformation is correct, the selection of properties to be transformed
has to be checked by the user as in the previous cases, and we need more transfor-
mation patterns: one for ‘string to qualitative’, one for ‘string to quantitative’,
and another two for ‘integer to quantitative’ and ‘float to quantitative’. One
more transformation pattern is needed to resolve boolean datatype properties,
of which all represent product features in OPDM ontologies. If we do not want to
create specific properties as in the ‘boolean vs. instance’ example, we can create
just one hasFeature and transform all boolean data properties to instances of
the Feature class created as a subclass of gr:QualitativeValue. Technically,
this transformation is analogous to ‘boolean vs. instance’, except for the name
of the new class (which is the general term ‘Feature’ instead of a specific term
such as ‘MediaFormat’) as well as property (the general ‘hasFeature’ instead of
the specific ‘playbackFormat’); also, user interaction is not needed in this case,
since all boolean features are transformed without manual selection.

To sum up, the ‘data vs. object property’ incoherence can be resolved using
five transformation patterns. Considering that there are several tens of OPDM
ontologies and each has several tens of data properties, the effort invested into
designing the transformation patterns is still worth it: it is much faster and easier
to use the transformation framework than to change all ontologies by hand.

17 All patterns are in full extent at http://nb.vse.cz/~svabo/patomat/tp/opdm/.
18 Unlike the previous cases, all of them in bulk rather than just the selected ones.

Semi-automated Structural Adaptation of Advanced E-Commerce Ontologies 9

<op1>

<entity_declarations>

<placeholder type="DatatypeProperty">?m</placeholder>

<placeholder type="Literal">?a1</placeholder>

<placeholder type="Literal">?a2</placeholder>

<placeholder type="Class">?pc</placeholder>

<entity type="Class">&xsd;boolean</entity>

<entity type="DatatypeProperty">

&gr;datatypeProductOrServiceProperty</entity>

<entity type="AnnotationProperty">&rdfs;label</entity>

<entity type="AnnotationProperty">&rdfs;comment</entity>

</entity_declarations>

<axioms>

| <axiom>DataProperty: ?m Range: boolean</axiom>

| <axiom>DataProperty: ?m SubPropertyOf:

datatypeProductOrServiceProperty</axiom>

| <axiom>DataProperty: ?m Annotations: label ?a1</axiom>

| <axiom>DataProperty: ?m Annotations: comment ?a2</axiom>

| <axiom>DataProperty: ?m Domain: ?pc</axiom>

</axioms>

</op1>

<op2>

<entity_declarations>

<placeholder type="Individual">?OP2_m</placeholder>

<placeholder type="Class">?OP2_C</placeholder>

<placeholder type="ObjectProperty">?OP2_p</placeholder>

<placeholder type="Literal">?OP2_a1</placeholder>

<placeholder type="Literal">?OP2_a2</placeholder>

<placeholder type="Class">?OP2_pc</placeholder>

<entity type="ObjectProperty">

&gr;qualitativeProductOrServiceProperty</entity>

</entity_declarations>

<axioms>

| <axiom>Individual: ?OP2_m Types: ?OP2_C</axiom>

<axiom>ObjectProperty: ?OP2_p SubPropertyOf:

qualitativeProductOrServiceProperty</axiom>

<axiom>Individual: ?OP2_m Annotations: label ?OP2_a1</axiom>

<axiom>Individual: ?OP2_m Annotations: comment ?OP2_a2</axiom>

<axiom>ObjectProperty: ?OP2_p Domain: ?OP2_pc</axiom>

<axiom>ObjectProperty: ?OP2_p Range: ?OP2_C</axiom>

</axioms>

</op2>

<pt>

<eqHet op1="?m" op2="?OP2_m"/> <eq op1="?a1" op2="?OP2_a1" />

<eq op1="?a2" op2="?OP2_a2" /> <eq op1="?pc" op2="?OP2_pc" />

<ntp entity="?OP2_C">MediaFormat</ntp>

<ntp entity="?OP2_p">playbackFormat</ntp>

<ntp entity="?OP2_a1">"+?a1+"</ntp>

<ntp entity="?OP2_a2">"+?a2+"</ntp>

</pt>

Fig. 2. Pattern for transforming (media type) boolean properties to instances

10 Marek Dudáš et al.

5.2 Reusability of the Described Transformation Patterns

In Table 1 we report on possible reusability of the three patterns described
above and the (naming) transformation pattern for ‘infix vs. prefix’ (Quantity
vs. NumberOf) incoherence from Section 3. The table shows the number of OPDM
ontologies each transformation pattern can be used for and whether the pattern
can be also used for other GR-compliant product ontologies outside of the OPDM
project or even for a non-GR-compliant ontology.

Table 1. Reusability of the transformation patterns

Transformation pattern Number of ontologies Any GR Non-GR

‘Datatype vs. instance’ 1 (PortableMP) but can be No Yes
easily adapted

‘Boolean vs. integer’ 4 Yes No

‘Datatype vs. object property’ All (31) Yes No

‘Infix vs. prefix’ All (31) Yes Yes

5.3 Transformation Pattern Application Using GUIPOT

As one of the user-oriented add-ons [9] to the PatOMat framework we devel-
oped the Graphical User Interface for Pattern-based Ontology Transformation
(GUIPOT), as means for comfortable application of transformation patterns.
GUIPOT is a plugin for Protégé. After loading a transformation pattern it dis-
plays a list of pattern instances of the source OP detected in the given ontology:
see the upper-center of the screen in Fig. 3, for an application of the ‘boolean
vs. instance’ pattern. By selecting one or more instances, the detected entities are
highlighted in the hierarchical view of the ontology19 in the left part of the plugin
window. Transformation is then invoked by clicking the ‘Apply Transformations’
button. The right part of the window shows the ontology after transformation.20

Entities that were affected by the transformation are highlighted in the hierar-
chical views.21 If the user is satisfied with the results of the transformation, s/he
can load the transformed ontology into Protégé and continue working with it.

In this example, the class portablemp:MediaFormat has been added as a
subclass of gr:QualitativeValue (upper-right pane) and the object property
portablemp:playbackFormat has been created (object properties view in the
bottom right pane). In the instance list in the bottom middle part of the screen
we can see that portablemp:MediaFormat has been populated with instances of
media formats; and in the data property list next to it can be verified that the
properties formerly (see the left part of the screen) representing media formats
are no longer present.

19 They can also be visualized in graph form using the popular OntoGraf plugin.
20 For brevity, we actually only show the screen as after this step, in in Fig. 3.
21 Again, they can be also displayed by OntoGraf.

Semi-automated Structural Adaptation of Advanced E-Commerce Ontologies 11

Fig. 3. Processing of ‘boolean vs. instance’ pattern by GUIPOT

6 Related Research

Aside the GR+OPDM ontology cluster, product ontologies have been system-
atically researched in a Korean national project [6]. These ontologies have been
built from the beginning as heavy-weight, suited for the purpose of B2B transac-
tions or even application in public procurement [7]. In contrast, our approach is
to start with medium-complex ontologies that are easy to understand and adapt
by e-commerce web masters, while further complexity can be added via semi-
automated adaptation precisely defined by declarative transformation patterns.

A pattern-based method similar to PatOMat22 is OPPL, which however
doesn’t allow for user interaction between the pattern detection and actual trans-
formation phases and covers a restricted set of operations. The authors of [8] im-
plemented an approach similar to ours, however, the transformation is considered
at the data level of an ontology rather than at the schema level as (primarily) in
our approach. The approach in [5] allows to transform ontologies (among other)
from OWL DL, they are however directed into a generic meta-model or a dif-
ferent specific meta-model such as that of UML or XML Schema. PatOMat, in
contrast, translates an ontology into its modelling alternatives within OWL. To
the best of our knowledge, none of the alternative approaches has been applied
on the product ontology domain.

22 OPPL was actually partly reused in the first version of the framework [11].

12 Marek Dudáš et al.

7 Conclusions and Future Work

The presented research leverages on several years of research on both e-commerce
ontology principles and ontology transformation techniques. It aims to provide
collections of product ontologies with better internal coherence as well as external
reusability, in particular, in the linked data world.

In the future, we also plan to address import-based extrinsic incoherence,
i.e., adaptation of various legacy ontologies to GR-based modeling. Presumably,
the design of ontologies for novel domains of products and services (such as
the building industry, which plays an important role in public procurement)
will also bring into light novel kinds of pattern, thus leading to enrichment of
the transformation pattern library. The proliferation of specific transformation
patterns will also need to be backed by a user-friendly pattern portal integrated
with the mainstream ontology pattern portal.23

References

1. Ding Y., Fensel D., Klein M., Omelayenko B., Schulten E.: The role of ontologies in
e-Commerce. In: Handbook on Ontologies, Springer, 2004.

2. Heath T., Bizer C.: Linked Data: Evolving the Web into a Global Data Space (1st
edition). Morgan & Claypool, 2011.

3. Hepp M.: GoodRelations: An Ontology for Describing Products and Services Offers
on the Web. In: Proc. EKAW2008, 2008, Springer LNCS, Vol.5268, 332-347.

4. Kĺımek J., Knap T., Mynarz J., Nečaský M., Svátek V.: Framework for Creating
Linked Data in the Domain of Public Sector Contracts. Deliverable 9a.1.1 of the
EU FP7 LOD2 project. Online, http://lod2.eu/Deliverable/D9a.1.1.html

5. Kensche D., Quix C., Chatti M., Jarke M.: GeRoMe: A Generic Role Based Meta-
model for Model Management. Journal on Data Semantics, 82–117, Vol.8, 2007.

6. Lee T., Lee I.-h., Lee S., Lee S.-g., Kim D., Chun J., Lee H., Shim J.: Building an
operational product ontology system. El. Commerce Res. and App. 5, 16-28 (2006).

7. Lee H., Shim J., Lee S., Lee S.-g.: Modeling Considerations for Product Ontology.
In: Advances in Conceptual Modeling – Theory and Practice, LNCS 4231, 2006.

8. Parreiras F. S., Staab S., Schenk S., Winter A.: In: Model Driven Specification of
Ontology Translations. In: ER-2008, Springer, LNCS 5231.

9. Šváb-Zamazal O., Dudáš M., Svátek V.: User-Friedly Pattern-Based Transformation
of OWL Ontologies. In: Proc. EKAW 2012, Galway, Springer-Verlag, LNCS 7603.

10. Šváb-Zamazal O., Schlicht A., Stuckenschmidt H., Svátek V.: Constructs Replac-
ing and Complexity Downgrading via a Generic OWL Ontology Transformation
Framework. In: Sofsem 2013, Springer, LNCS 7741.

11. Šváb-Zamazal O., Svátek V., Iannone L.: Pattern-Based Ontology Transformation
Service Exploiting OPPL and OWL-API. In: EKAW-2010, Lisbon, Portugal, 2010.

12. Svátek V., Šváb-Zamazal O., Vacura M.: Adapting Ontologies to Content Pat-
terns using Transformation Patterns. In: Workshop on Ontology Patterns (WOP
2010) collocated with ISWC’10, Shanghai, China, November 8, 2010. Online http:

//sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-671/.
13. Zamazal O., Bühmann L., Svátek V.: Checking and Repairing Ontological Naming

Patterns using ORE and PatOMat. In: WoDOOM’13, workshop at ESWC 2013.

23 http://ontologydesignpatterns.org

