
Towards a Vocabulary for Data Quality Management in
Semantic Web Architectures

Christian Fürber

Universitaet der Bundeswehr Muenchen
Werner-Heisenberg-Weg 39

85577 Neubiberg
+49 89 6004 4218

christian@fuerber.com

Martin Hepp
Universitaet der Bundeswehr Muenchen

Werner-Heisenberg-Weg 39
85577 Neubiberg
+49 89 6004 4217

mhepp@computer.org

ABSTRACT
Reliable decision-making and reliable information based on
Semantic Web data requires methodologies and techniques for
managing the quality of the published data. To make things more
complicated, the judgment of what is “good” data will often
depend on the task at hand or the subjective requirements of data
owners or data consumers. Some data quality requirements can be
modeled using data quality rules, i.e. executable definitions that
allow the identification and measurement of data quality
problems. In this paper, we provide a conceptual model that
allows the representation of such rules and other quality-related
knowledge using the Resource Description Framework (RDF) and
the Web Ontology Language (OWL). Based on our model, it is
possible to monitor and assess the quality of data sources and to
automate data cleansing tasks. The use of a generic conceptual
model based on Semantic Web formalisms supports the definition
of reusable, broadly applicable SPARQL queries and portable
applications for data quality management (DQM). Furthermore,
the explicit representation of rules in RDF/OWL facilitates rule
management tasks, e.g. for analyzing consistency among the rules,
and allows to collaborate and create a shared understanding.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods – Semantic networks; E.m [Data]:
Miscellaneous; J.1 [Computer Applications] Administrative
Data Processing – Business; K.6.4 [Computing Milieux]: System
Management – Quality assurance

General Terms
Management, Measurement, Documentation,, Verification,

Keywords
Linked Data Management, Data Quality Management,
Information Quality, Ontology, SPARQL, Semantic Web,
Knowledge Representation, Trust

1. INTRODUCTION
The management of data quality plays a crucial role in every
information system. Poor data may lead to poor decisions and
operational disturbances or even system failures [cf. 1]. Recently,
researchers and businesses have started to create, publish, and
interlink a lot of data on the World Wide Web as part of the
Semantic Web initiative. The amount of available data on Web
scale thereby promises a higher degree in automation, better
integration, and higher reusability of data [cf. 2]. Due to the
openness of the Web, however, anyone can publish and retrieve
data. While this creates tremendous opportunities for future
applications, it also increases the need for tools and standards that
support the automation of data quality management (DQM) for
such Semantic Web data. In particular, we need standards that
facilitate (1) the identification of data quality problems, (2) the
assessment of data quality for a given task or context, and (3) the
correction of data quality problems. Unfortunately, these
challenges have not yet been sufficiently addressed by Semantic
Web research. In this paper, we propose a domain-independent,
machine-readable conceptual model for DQM in the form of an
ontology, i.e. a formal conceptualization of a domain, that allows
the standardized formulation of data quality and data cleansing
rules, the classification of data quality problems, and the
computation of data quality scores for Semantic Web data
sources. The standardized formulation of data quality rules in
RDF/OWL thereby increases the transparency of quality
requirements, facilitates consistency checks among multiple data
quality requirements, simplifies the reuse of those rules at Web
Scale, and eases the identification of shared quality requirements.
Moreover, the ontology enables quality checks with a limited set
of queries, since they only use terms from the DQM vocabulary.
The classification part of the DQM ontology helps to keep track
of previously identified quality problems. The assessment of data
quality scores may help with the selection of the most appropriate
data sources in a distributed setting, and with the generation of
trust in the resulting data or decisions. Furthermore, our approach
also allows defining data cleansing rules that help automate data
cleansing tasks.

In the following sections, we will define the requirements for such
an ontology, and explain its core conceptual elements. Finally, we
present a preliminary evaluation of the ontology by showing how
we can use the represented knowledge for DQM purposes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
LWDM 2011, March 25, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0608-9/11/03 ...$10.00.

2. Defining Data Quality
Data quality is often defined as data’s “fitness for use” [1, 3].
Accordingly, the quality requirements of data typically depend on
the intended usage of the data. Semantic Web data can serve
various purposes, which are often unknown to the data publisher.
This also means that the quality requirements may be very
heterogeneous, which stresses the importance to expose data
quality requirements in order to understand the underlying
assumptions, e.g. when presenting data quality assessment results.
Moreover, it is important to be aware of the type and nature of the
data item that is subject to the quality evaluation, because
different components in a semantic system, such as data values,
data models, queries, reasoners, and user interfaces, may all
influence the perception of quality. In this paper, we concentrate
on the quality of data, i.e. the quality of instances and data values.
Throughout this paper, we will use the term “instance” to refer to
a data representation of an entity including the states of its
properties, and the term “value” to refer to the state of a property
value itself.

3. METHOD
The development of our DQM ontology is based on the ontology
engineering methodology as proposed by Uschold and Gruninger
[4]. This section describes the requirements for the DQM
ontology via motivating scenarios and competency questions; two
standard steps in ontology construction. In section 4, we will
define the terms required to formulate the answers to our
competency questions. In section 5, we describe how the ontology
was formalized and which existing ontology elements have been
adopted. In section 6, we present first results of our evaluation.

3.1 Motivating Scenarios
In the following, we describe typical scenarios for the application
of a standard ontology for DQM:
Scenario 1: Data owners can collect, maintain, and populate data
quality rules for their data in a structured way, so that queries can
use them to derive data quality monitoring and data quality
assessment reports. The data quality monitoring reports show the
instances that violate the data quality rules. The data quality
assessment reports give data quality scores based on the specified
data quality rules. Moreover, they can represent data cleansing
rules in a structured way, so that update queries can execute them
to correct data defects automatically.

Scenario 2: Data consumers can select data quality rules of a
specific person or for a specific task and add their own data
quality rules via the DQM vocabulary to evaluate the quality state
of a Semantic Web data source.

Scenario 3: Data owners and data consumers have an overview of
all data quality rules specified for a data source. Furthermore, they
can check the consistency among the specified rules and select
rules according to certain rule properties.
Scenario 4: Data consumers can retrieve only such data that
meets their individual quality requirements as specified using the
DQM vocabulary.
Summarizing the motivating scenarios above, we need a means to
represent quality-related knowledge in a way so that it can be
processed by automated queries for (1) data quality monitoring,
(2) data quality assessment, (3) data cleansing, and (4)
information filtering, while the applied quality requirements

remain transparent to the user at all times and while their
consistency can be checked easily.

3.2 Competency Questions
Based on the motivating scenarios and on a literature analysis of
typical data quality problems [5-8], we specify the requirements
for a DQM ontology via the following competency questions:
CQ1: Which instances of a data source suffer from data quality
problems according to predefined data quality requirements?
CQ1.1: Which instances of a given class contain values for a
given property that match given illegal values?

CQ1.2: Which instances of a given class contain values for a
given property that do not match given legal values for that
property?

CQ1.3: Which instances of a given class with value combinations
in two or more given properties do not match the legal value
combinations for given tuples of properties of another given
class?
CQ1.4: Which instances of a given class have numeric values in a
given property that fall outside a given closed or open interval of
legal values?
CQ1.5: Which instances of a given class have values in a given
property that contain illegal characters or illegal syntactical
patterns?
CQ1.6: Which instances of a given class can be considered
duplicates based on a given identity metric?
CQ1.7: Which instances of a given class have non-unique values
in a given property that must only contain unique values?
CQ1.8: Which instances of a given class lack a value for a given
mandatory property (e.g. empty string or null values)?

CQ1.9: Which instances of a given class lack a given mandatory
property?
CQ1.10: Which instances of a given class are outdated?

CQ2: What is the data quality state of a selected data source
according to predefined data quality requirements?

CQ2.1: How complete is the data for a given property in instances
of a given class?

CQ2.1.1: How many empty literals for a given property exist in
instances of a given class?

CQ2.1.2: How many instances within a given class exist that lack
a given property?

CQ2.1.3: How many instances must have a literal value for a
given property?
CQ2.2: How semantically accurate are the values of a given
property in instances of a given class?
CQ2.2.1: How many instances of a given class have semantically
incorrect values for a given property?
CQ2.2.2: How many instances of a given class are required to
have semantically correct values for a given property?

CQ2.3: How syntactically accurate are the values of a given
property in instances of a given class?

CQ2.3.1: How many instances of a given class have syntactically
incorrect values for a given property?

CQ2.3.2: How many instances of a given class must have
syntactically correct values for a given property?
CQ2.4: How current are the instances of a given class?
CQ2.4.1: How many instances of a given class are outdated?
CQ2.4.2: How many instances of a given class must be current?

CQ2.5: How unique are the values of a given property in
instances of a given class?

CQ2.5.1: How many instances of a given class have non-unique
values for a given property?

CQ2.5.2: How many instances exist in a given class that must
have unique values for a given property?
CQ3: For which time-frame is the data quality rule valid?
CQ4: Which rules are created by Person X?
CQ5: Which rules are based on source Y?
CQ6: Which rules have a confidence level above XY?
CQ7: Which rules are task-dependent?
CQ8: Which rules apply for task A?
CQ9: When was the rule last modified?

CQ10: Which data quality problems affect instances of class B
and/or values of property X?
CQ11: Which data quality rules can be used to filter data that
meets the specified quality requirements?
CQ12: Which rules can be applied for data cleansing?

4. DOMAIN CAPTURE
Based on the requirements specified in the previous section, we
describe the conceptual elements for the representation of DQM-
relevant knowledge. Figure 1 shows an UML Class diagram that
provides an overview of the conceptual elements. However, due
to the early stage of the work, additional vocabulary elements, e.g.
for the description of additional data quality rules, data cleansing
rules, data quality problem types, or data quality dimensions, may
be specified and added to the vocabulary as part of our future
work.

4.1 Classes for Data Quality Rules
In this section, we describe the terms required to represent certain
kinds of data quality rules. We identified the following data
quality rule classes by analyzing typical data quality problem
types on instance level as specified in [5-8].

Data Quality Rule: A data quality rule is an externally given
directive or a consensual agreement that defines the content
and/or structure that constitute high quality data instances and
values.

Duplicate Instance Rule: A duplicate instance rule is a data
quality rule that specifies the properties which (in combination)
uniquely identify an entity. I.e. if the properties of two or more
different instances represent the same state, then the instances
represent the same entity. Thus, the instances are considered to be
duplicates.
Legal Value Rule: A legal value rule is a data quality rule that
specifies all values that a certain property is allowed to obtain.
Legal value rules, therefore, refer to reference properties of
classes that hold instances with all allowed values.

Functional Dependency Rule: A functional dependency rule is a
data quality rule that specifies legal value combinations for two or
more properties that are allowed to occur within the same
instance. Functional dependency rules refer to reference properties
of classes that hold instances with all allowed value combinations.
Legal Value Range Rule: A legal value range rule is a data
quality rule that specifies the upper and/or lower boundary of
numeric values that a certain property is allowed to obtain.
Illegal Value Rule: An illegal value rule is a data quality rule that
specifies the values that a certain property must not contain.
Illegal value rules, therefore, refer to reference properties that
hold all disallowed values.
Illegal Value Range Rule: An illegal value range rule is a data
quality rule that specifies the upper and/or lower boundary of
valid numeric values.
Outdated Instance Rule: An outdated instance rule is a data
quality rule that specifies the point in time when an instance is no
longer current.

Expiry Rule: An expiry rule is an outdated instance rule that
specifies classes which hold instances with an expiration date that
must not exceed the current date and time.

Update Rule: An update rule is an outdated instance rule that
specifies the maximum timespan in which an instance has to be
updated.

Property Completeness Rule: A property completeness rule is
an abstract data quality rule class for data quality rules that check
the completeness of instances of a certain class regarding their
property values.

Missing Property Rule: A missing property rule is a property
completeness rule that specifies a certain property that must exist
in instances of a certain class.
Missing Literal Rule: A missing literal rule is a property
completeness rule that specifies a certain property that must have
a literal value in instances of a certain class.

Conditional Property Rule: A conditional property rule is a
property completeness rule that specifies a certain property that
must exist in a certain subset of instances of a certain class.
Conditional Literal Rule: A conditional literal rule is a property
completeness rule that specifies a certain property that must have
literal values in a certain subset of instances of a certain class.
Unique Value Rule: A unique value rule is a data quality rule
that specifies that each value of a certain property must be unique
in instances of a certain class.

Syntax Rule: A syntax rule is a data quality rule that specifies the
allowed characters and/or patterns for values for a certain property
of instances of a certain class.

4.2 Properties of Data Quality Rules
In the previous section, we described the different classes of data
quality rules. The properties for these classes can be roughly
separated into global properties, i.e. properties that are inherent to
every data quality rule, and specific properties, i.e. properties that
belong to a subset of data quality rules.

4.2.1 Global Properties
In the following, we describe the properties that are applicable for
every data quality rule type.

Creator of the Rule: Every data quality rule is created by at least
one agent. For provenance reasons, it is important to attach
information about the rule’s creator.

Source of the Rule: Data quality rules are usually based on
information sources, such as real world perceptions, domain

knowledge, policies, data standards, laws, personal or consensual
decisions, etc. For provenance reasons, it is important to attach
information about the rule’s source.

Tested Class: The tested class property specifies the class that
holds the instances that shall be tested for data quality problems.

Figure 1. Overview about the DQM ontology1

1 The class dqm:DataQualityScores and its elements are not shown in the diagram due to space limitations

Tested Property: The property that holds the values to be tested
for data quality problems is called “Tested Property”.

Validity: Sometimes data quality rules may be valid only for a
limited period of time. Thus, it must be possible to define a start
and end time for the validity period of the rule.

Confidence: Sometimes rule creators are not sure about the
correctness and completeness of data quality rules, while it must
still be possible to express rules with uncertainty about their
completeness and correctness. Thus, it should be possible to
define a confidence level for each data quality rule indicating the
confidence of the rule creator in the correctness and completeness
of the rule.
Last Modification: Since data quality rules may change over
time, it shall be possible to identify the time of the last
modification.
Relevancy for Assessment: Not every data quality rule will be
eligible for data quality assessment, e.g. due to immaturity, low
precision, or lack of consensual understanding. Thus, it shall be
possible to flag all rules whether they are relevant for data quality
assessment.

Relevancy for Information Filtering: Some data quality rules
may be used to retrieve only data that meets the previously
specified quality requirements. Thus, a property shall specify
whether the data quality rule shall be used for information
filtering.

4.2.2 Specific Properties
In the following, we describe the properties that belong to a subset
of data quality rule classes:

Trusted Class: Legal value rules and functional dependency rules
require the specification of the trusted class as a reference that
holds instances with legal values / legal value combinations.

Trusted Property: A trusted property holds the values that serve
as a trusted reference in legal value rules / functional dependency
rules, e.g. to define legal values for a tested property.

Blacklist Class: A blacklist class holds instances with values that
are disallowed for a certain data set. Thus, illegal value rules refer
to such classes over the blacklist class property.

Blacklist Property: A blacklist property holds the values that are
disallowed for a certain data set.

Regular Expression: Regular expressions are a common means
to express character ranges and other syntactic patterns. Thus,
they can be used to express syntax rules and are, therefore, an
important property of the syntax rules.

Expected Update Interval: Update rules require the specification
of an expected update interval which indicates the maximum
duration between two data updates for instances of a class in order
to be current.

Conditional Property: Conditional property / literal rules only
apply to a subset of instances of a specific class. To localize the
relevant subset of the rule, it is necessary to specify the
conditional property that holds the values that can be used to filter
the relevant instances for the rule. This property is called a
conditional property.
Conditional Value: The value which can be used to select the
relevant instances for conditional property / literal rules is
specified via the conditional value property.

Upper / Lower Limit: Legal / illegal value ranges can be
determined via an upper and/or lower boundary to check whether
the value lies inside or outside of the specified interval. Moreover,
upper and lower limits may be used to determine a subset of all
instances of a specific class via the values of a conditional
property in cases of conditional completeness rules.

4.3 Data Quality Problem Classification
In the following, we describe the classes that can be used to
classify data quality problems that can be discovered by data
quality rules specified in the previous section.
Data Quality Problem: A data quality problem occurs when a
data value or a data instance does not meet the quality
requirements.
Syntax Violation: A syntax violation is a data quality problem
that occurs when a data value contains disallowed characters or
does not match a predefined pattern.

Functional Dependency Violation: A functional dependency
violation is a combination of different property values within the
same instance that must not occur together. E.g. an instance
describing the man “Peter Miller” has the value “Mr.” as its
salutation property, but the value “female” as its gender.

Illegal Value: An illegal value is a data value that must not be
used for a property.

Missing Element: A missing element is a data quality problem
that occurs when schema elements, instances, or data values are
missing, while required.

Missing Property: A property is missing when an instance does
not contain a specific property that is required.

Missing Value: A missing value occurs when a property of an
instance does not hold a value. This is very common in Semantic
Web data that was automatically generated from existing sources
in a template-based approach.

Outdated Instance: An instance is outdated when it represents an
outdated state of its corresponding real-world entity.

Out Of Range Value: A value is out of range when it is not part
of the legal value range or when it is part of the illegal value
range.

Duplicate Instance: Two or more instances are duplicates when
they represent the same real world entity.

Uniqueness Violation: A uniqueness violation occurs when two
or more identical values are assigned to a property that requires
unique values.

4.4 Properties of Data Quality Problems
In the following, we describe the properties required for the
description of data quality problems.

Affected Instance: An affected instance is the data instance that
contains one or more data quality problems.
Affected Class: An affected class holds one or more affected
instances.
Affected Property: An affected property specifies the property of
a data instance that contains one or more data quality problems.
Some data quality problems, such as functional dependency
violations, have more than one affected property.

Time of Identification: The time of identification specifies the
date and time when the data quality problem was identified.

4.5 Classes for Data Quality Assessment
Data quality assessment in the understanding of this paper is the
“process of assigning numerical and categorical values to
information quality (IQ) dimensions” [9]. IQ dimensions in our
understanding are thereby data quality dimensions that can be
measured using data quality rules. Based on a summary by Batini
et al. [10], we identified five basic dimensions that can be used to
classify data quality scores which are assessable using the data
quality rules specified above.
Data Quality Assessment: Data quality assessment is an abstract
class for data quality dimensions that can be used to structure
scores that indicate the quality state of classes and/or properties.
Completeness: Completeness is the “extent to which data are of
sufficient breadth, depth, and scope for the task at hand” [3]. In
terms of the Semantic Web we distinguish between property
completeness and population completeness.

Property Completeness: Property completeness is the degree to
which values for a specific property or the property itself are not
missing in entities of a specific class [cf. 11, 12].

Population Completeness: Population completeness is the degree
to which all objects of a certain reference are represented in a
specific class [cf. 11, 12].

Accuracy: Accuracy in the understanding of this paper is the
degree to which a data value represents the desired state regarding
syntax and semantics.

Syntactic Accuracy: Syntactic accuracy is the degree to which
data values of a property represent legal values and are free from
syntax violations.

Semantic Accuracy: Semantic accuracy is the degree to which
the data values of an instance represent the correct state of an
entity’s property.

Uniqueness: Uniqueness is the degree to which properties and
classes are free from duplicate values and instances.
Entity Uniqueness: Entity uniqueness is the degree to which
entities (that must be uniquely represented within a certain class)
are unique.
Property Uniqueness: Property uniqueness is the degree to
which the values of a property (that must only contain unique
values within instances of a certain class) are unique.
Timeliness: Timeliness in the understanding of this paper is the
degree to which instances of a specific class (1) are updated
within an expected time or (2) have not exceeded their expiration
date.

4.6 Properties for Data Quality Assessment
In the following, we describe the properties of data quality scores.
Assessed Class: The assessed class holds the instances that have
been analyzed to compute the assessment score.
Assessed Property: The assessed property represents all
properties that have been tested for rule violations during the
computation of the assessment score.
Plain Score: The plain score represents a data quality dimension
score that was assessed by using a certain formula that accounts
for the violations of data quality rules related to the size of the

relevant data set. It can be computed by using the simple ratio
which is calculated by subtracting the ratio between the total
number of rule violations and the total number of relevant
instances from one. The result ranges from 0 to 1 with 0
representing the worst quality state and 1 representing a perfect
quality state of the investigated data items [12].
Weighted Score: A weighted score is a data quality dimension
score that is computed by the integration of the importance of the
data quality rules for the task at hand and/or by the importance of
the task the data is used for.

Time of Assessment: The time of assessment represents the date
and time when the data quality score was computed.

4.7 Data Cleansing Rules
In cases with unambiguous rules, it is possible to define data
cleansing rules that can be used to automatically update all
incorrect values in the original data source. In the following, we
describe the classes and properties required for representing data
cleansing rules.

Data Cleansing Rule: A data cleansing rule is an unambiguous
rule that precisely specifies the required state of a data value.
Strict Value Combination Rule: A strict value combination is a
combination of two values of different properties that may only be
assigned to each other, but not to other values.
Whitespace Removal Rule: A white space removal rule states
that whitespaces at the beginning of a string and at the end of a
string shall be removed for the specified property.

Value Substitution Rule: A value substitution rule specifies a
value to be removed and a new value that shall substitute the
removed value.
Data Cleansing: The data cleansing property specifies whether
the rule shall be applied to cleanse the data in the data source.
Current / New Value: The current / new value properties specify
the value to be removed and the new value of value substitution
rules.
Furthermore, data cleansing rules inherit the properties (1) rule
name, (2) tested class, (3) tested property, and (4) validity from
the data quality rules class.

4.8 Task Dependency
Metrics for data quality assessment can be task-dependent or task-
independent. Task-independent rules are of general applicability,
while task-dependent rules are only appropriate for certain tasks
[12]. Hence, it must be possible to model a relationship between a
data quality rule and its relevant tasks in cases where the rule is
task-dependent. Moreover, the vocabulary must provide means to
clearly identify task-independent rules.

5. ONTOLOGY CODING
We chose OWL2 for the design of the ontology, since we aim to
provide a vocabulary for DQM in Semantic Web Architectures,
want to be able to use OWL reasoners, and since OWL is widely
used in the Semantic Web. We based the formalization of the
ontology on the results of our domain capture. The UML class
diagram depicted in figure 1 provides an overview of the DQM
ontology, which currently consists of 45 classes and 56 properties.

2 http://www.w3.org/TR/owl-features/
3 http://purl.org/net/provenance/ns#

As a prerequisite, we avoided designing an OWL Full ontology,
so that reasoning will still be decidable when the ontology is used.
This forced us to create several datatype properties with datatype
xsd:anyURI, since DQM requires to use class and property
URIs as objects, which is otherwise not allowed in OWL DL.
With this workaround we are able to express statements about
ontology classes and properties, without disturbing the
performance of reasoning. Before we created the DQM ontology,
we analyzed existing ontologies for reusable classes and
properties. For the description of rule creators, we suggest to
combine the DQM vocabulary with the Provenance Vocabulary3,
in particular with its data creation classes and properties.
Alternatively, we can use the property dc:creator from the
Dublin Core Metadata ontology4. In addition, we suggest to use
the property dc:source for the description of the rule source.

Figure 2. SPARQL query to classify syntax violations

All other elements have been created in the dqm: namespace,
since we could not find appropriate vocabulary elements in
available ontologies. Regarding the representation of task
dependency, the data quality management ontology is compatible
to any task ontology, i.e. ontologies that describe tasks and
processes. Such ontologies can be connected by using the object
property dqm:dependsOn of the domain class
dqm:DataQualityRule. Alternatively, we created the class
dqm:Task with properties that represent relevant information for
DQM for cases without an appropriate task ontology.

6. PRELIMINARY EVALUATION
We performed a preliminary evaluation of our approach using a
small test data set containing artificially created data quality

3 http://purl.org/net/provenance/ns#
4 http://www.dublincore.org/2010/10/11/dcelements.rdf

problems. We integrated the test data set with our DQM ontology
and defined data quality rules about the classes and properties of
the test data set. Also, we executed data quality problem
classification queries over the data set. The query depicted in
figure 2 classifies all syntax violations and adds RDF triples to the
local graph. In a second step, we executed a data quality
assessment query depicted in figure 3 that uses only explicitly
flagged syntax rules to calculate syntactic accuracy. It is also
imaginable to select only rules from a certain creator or a certain
task above a certain confidence level for that purpose. The
SPARQL queries thereby only depend on vocabulary elements of
the DQM ontology, so that the queries are applicable on any data
set. Due to the use of OWL datatype properties, we had to make
the URI’s dereferencable again using a SPARQL extension
function.

Figure 3. Computation of syntactic accuracy for all classes
and properties specified in instances of dqm:SyntaxRule

7. RELATED WORK
At present, we do not know of a comprehensive standard
vocabulary to represent DQM information in Semantic Web
environments. However, there are a few approaches that are
related. The SPARQL Inferencing Notation (SPIN) provides a
vocabulary that allows the representation of SPARQL queries in

RDF. In [13] we have shown how SPIN can be used to represent
data quality rules. Although SPIN is very useful for representing
SPARQL-based rules in RDF, a specialized vocabulary for DQM
provides more guidance and is better fitted to the requirements.
The Web Information Quality Assessment Policy Language
(WIQA-PL) is based on SPARQL grammar and facilitates the
definition of information filtering policies allowing data
consumers to retrieve only information that meets their quality
requirements expressed in WIQA-PL. The major drawback of this
approach is that the quality requirements are not represented in
RDF itself. Hence, the management of the policies may become
very complex as the amount of policies is growing. Moreover, it
requires a framework that can deal with WIQA-PL. Recently there
have been a couple of provenance vocabularies published that
shall provide metadata for data quality assessment. For instance,
Hartig and Zhao published the Provenance Vocabulary1 and
showed how to assess timeliness with the help of provenance
information [14]. The Provenance Vocabulary is focused on
representing metadata about the creation and access of data rather
than directly representing quality requirements. The DQM
Ontology could complement the Provenance Vocabulary and
might cover most information required for the holistic
management of data quality. Finally, the Object Management
Group has published a vocabulary for representing the Semantics
of Business Vocabulary and Business Rules (SBVR) to facilitate
the standard expression of policies and compliance rules [15]. Due
to its focus on business rules, SBVR misses vocabulary elements
that are specifically required for DQM.

8. Conclusions and Outlook on Future Work
In this paper, we have proposed a generic vocabulary that
facilitates the representation of knowledge required for data
quality monitoring, data quality assessment, data cleansing, and
quality-driven data retrieval in Semantic Web architectures. The
vocabulary was designed so that standard SPARQL queries can
process the knowledge to automate these activities and, therefore,
reduce manual effort. Due to the standardized representation of
quality requirements in RDF/OWL, it is possible to capture,
manage, and share data quality requirements and check their
consistency. This enables us to create a consensual understanding
about data quality and helps reusing data quality knowledge. Due
to its early stage, the current version of the DQM ontology may
still miss important elements. However, we will continue the
application of the proposed vocabulary on real-world settings to
discover further extensions and improvements. Moreover, it is
planned to publish the DQM ontology at http://semwebquality.org
for public usage.

9. REFERENCES
[1] Redman, T. C. 2001. Data quality : the field guide Digital

Press, Boston.

[2] Berners-Lee, T., Hendler, J., and Lassila, O. 2001. The
Semantic Web, Scientific American, vol. 284, no. 5, 34-43.

[3] Wang, R. Y., and Strong, D. M. 1996. Beyond accuracy:
what data quality means to data consumers, Journal of
Management Information Systems, vol. 12, no. 4, 5-33.

[4] Uschold, M., and Gruninger, M. 1996. Ontologies:
Principles, Methods, and Applications, The Knowledge
Engineering Review, vol. 11, no. 2, 93-155.

[5] Leser, U., and Naumann, F. 2007. Informationsintegration :
Architekturen und Methoden zur Integration verteilter und
heterogener Datenquellen dpunkt-Verl., Heidelberg.

[6] Oliveira, P., Rodrigues, F., and Henriques, P. R. 2005 A
Formal Definition of Data Quality Problems. In International
Conference on Information Quality (MIT IQ Conference)
(Cambridge, MA, USA, 2005).

[7] Oliveira, P., Rodrigues, F., Henriques, P. R. et al. 2005 A
Taxonomy of Data Quality Problems. In 2nd Int. Workshop
on Data and Information Quality (in conjunction with
CAiSE'05) (Porto, Portugal, 2005).

[8] Rahm, E., and Do, H.-H. 2000. Data Cleaning: Problems and
Current Approaches, IEEE Data Engineering Bulletin, vol.
23, no. 4, 3-13.

[9] Ge, M., and Helfert, M. 2008 Data and Information Quality
Assessment in Information Manufacturing Systems. In 11th
International Conference on Business Information Systems
(BIS2008) (Inssbruck, Austria, 2008). 380-389.

[10] Batini, C., Cappiello, C., Francalanci, C. et al. 2009.
Methodologies for data quality assessment and improvement,
ACM Comput. Surv., vol. 41, no. 3, 1-52. DOI=
http://doi.acm.org/http://doi.acm.org/10.1145/1541880.15418
83.

[11] Batini, C., and Scannapieco, M. 2006. Data quality :
concepts, methodologies and techniques Springer, Berlin.

[12] Pipino, L. L., Lee, Y. W., and Wang, R. Y. 2002. Data
quality assessment, Commun. ACM, vol. 45, no. 4, 211-218.
DOI=
http://doi.acm.org/http://doi.acm.org/10.1145/505248.506010
.

[13] Fürber, C., and Hepp, M. 2010 Using Semantic Web
Resources for Data Quality Management. In 17th
International Conference on Knowledge Engineering and
Knowledge Management (EKAW2010) (Lisbon, Portugal,
2010). 211-225.

[14] Hartig, O., and Zhao, J. 2009 Using Web Data Provenance
for Quality Assessment. In First International Workshop on
the role of Semantic Web in Provenance Management (Co-
located with the 8th International Semantic Web Conference,
ISWC-2009) (Washington D.C., USA., 2009).

[15] "Semantics of Business Vocabulary and Business Rules
(SBVR)," Object Management Group.

