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ABSTRACT 
Reliable decision-making and reliable information based on 
Semantic Web data requires methodologies and techniques for 
managing the quality of the published data. To make things more 
complicated, the judgment of what is “good” data will often 
depend on the task at hand or the subjective requirements of data 
owners or data consumers. Some data quality requirements can be 
modeled using data quality rules, i.e. executable definitions that 
allow the identification and measurement of data quality 
problems. In this paper, we provide a conceptual model that 
allows the representation of such rules and other quality-related 
knowledge using the Resource Description Framework (RDF) and 
the Web Ontology Language (OWL). Based on our model, it is 
possible to monitor and assess the quality of data sources and to 
automate data cleansing tasks. The use of a generic conceptual 
model based on Semantic Web formalisms supports the definition 
of reusable, broadly applicable SPARQL queries and portable 
applications for data quality management (DQM). Furthermore, 
the explicit representation of rules in RDF/OWL facilitates rule 
management tasks, e.g. for analyzing consistency among the rules, 
and allows to collaborate and create a shared understanding.  

Categories and Subject Descriptors 
I.2.4 [Artificial Intelligence]: Knowledge Representation 
Formalisms and Methods – Semantic networks; E.m [Data]: 
Miscellaneous; J.1 [Computer Applications] Administrative 
Data Processing – Business; K.6.4 [Computing Milieux]: System 
Management – Quality assurance 

General Terms 
Management, Measurement, Documentation,, Verification, 

Keywords 
Linked Data Management, Data Quality Management, 
Information Quality, Ontology, SPARQL, Semantic Web, 
Knowledge Representation, Trust 

 

1. INTRODUCTION 
The management of data quality plays a crucial role in every 
information system. Poor data may lead to poor decisions and 
operational disturbances or even system failures [cf. 1]. Recently, 
researchers and businesses have started to create, publish, and 
interlink a lot of data on the World Wide Web as part of the 
Semantic Web initiative. The amount of available data on Web 
scale thereby promises a higher degree in automation, better 
integration, and higher reusability of data [cf. 2]. Due to the 
openness of the Web, however, anyone can publish and retrieve 
data. While this creates tremendous opportunities for future 
applications, it also increases the need for tools and standards that 
support the automation of data quality management (DQM) for 
such Semantic Web data. In particular, we need standards that 
facilitate (1) the identification of data quality problems, (2) the 
assessment of data quality for a given task or context, and (3) the 
correction of data quality problems. Unfortunately, these 
challenges have not yet been sufficiently addressed by Semantic 
Web research. In this paper, we propose a domain-independent, 
machine-readable conceptual model for DQM in the form of an 
ontology, i.e. a formal conceptualization of a domain, that allows 
the standardized formulation of data quality and data cleansing 
rules, the classification of data quality problems, and the 
computation of data quality scores for Semantic Web data 
sources. The standardized formulation of data quality rules in 
RDF/OWL thereby increases the transparency of quality 
requirements, facilitates consistency checks among multiple data 
quality requirements, simplifies the reuse of those rules at Web 
Scale, and eases the identification of shared quality requirements. 
Moreover, the ontology enables quality checks with a limited set 
of queries, since they only use terms from the DQM vocabulary. 
The classification part of the DQM ontology helps to keep track 
of previously identified quality problems. The assessment of data 
quality scores may help with the selection of the most appropriate 
data sources in a distributed setting, and with the generation of 
trust in the resulting data or decisions. Furthermore, our approach 
also allows defining data cleansing rules that help automate data 
cleansing tasks.  

In the following sections, we will define the requirements for such 
an ontology, and explain its core conceptual elements. Finally, we 
present a preliminary evaluation of the ontology by showing how 
we can use the represented knowledge for DQM purposes. 
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2. Defining Data Quality 
Data quality is often defined as data’s “fitness for use” [1, 3]. 
Accordingly, the quality requirements of data typically depend on 
the intended usage of the data. Semantic Web data can serve 
various purposes, which are often unknown to the data publisher. 
This also means that the quality requirements may be very 
heterogeneous, which stresses the importance to expose data 
quality requirements in order to understand the underlying 
assumptions, e.g. when presenting data quality assessment results. 
Moreover, it is important to be aware of the type and nature of the 
data item that is subject to the quality evaluation, because 
different components in a semantic system, such as data values, 
data models, queries, reasoners, and user interfaces, may all 
influence the perception of quality. In this paper, we concentrate 
on the quality of data, i.e. the quality of instances and data values. 
Throughout this paper, we will use the term “instance” to refer to 
a data representation of an entity including the states of its 
properties, and the term “value” to refer to the state of a property 
value itself. 

3. METHOD 
The development of our DQM ontology is based on the ontology 
engineering methodology as proposed by Uschold and Gruninger 
[4]. This section describes the requirements for the DQM 
ontology via motivating scenarios and competency questions; two 
standard steps in ontology construction. In section 4, we will 
define the terms required to formulate the answers to our 
competency questions. In section 5, we describe how the ontology 
was formalized and which existing ontology elements have been 
adopted. In section 6, we present first results of our evaluation. 

3.1 Motivating Scenarios 
In the following, we describe typical scenarios for the application 
of a standard ontology for DQM: 
Scenario 1: Data owners can collect, maintain, and populate data 
quality rules for their data in a structured way, so that queries can 
use them to derive data quality monitoring and data quality 
assessment reports. The data quality monitoring reports show the 
instances that violate the data quality rules. The data quality 
assessment reports give data quality scores based on the specified 
data quality rules. Moreover, they can represent data cleansing 
rules in a structured way, so that update queries can execute them 
to correct data defects automatically. 

Scenario 2: Data consumers can select data quality rules of a 
specific person or for a specific task and add their own data 
quality rules via the DQM vocabulary to evaluate the quality state 
of a Semantic Web data source. 

Scenario 3: Data owners and data consumers have an overview of 
all data quality rules specified for a data source. Furthermore, they 
can check the consistency among the specified rules and select 
rules according to certain rule properties. 
Scenario 4: Data consumers can retrieve only such data that 
meets their individual quality requirements as specified using the 
DQM vocabulary. 
Summarizing the motivating scenarios above, we need a means to 
represent quality-related knowledge in a way so that it can be 
processed by automated queries for (1) data quality monitoring, 
(2) data quality assessment, (3) data cleansing, and (4) 
information filtering, while the applied quality requirements 

remain transparent to the user at all times and while their 
consistency can be checked easily. 

3.2 Competency Questions 
Based on the motivating scenarios and on a literature analysis of 
typical data quality problems [5-8], we specify the requirements 
for a DQM ontology via the following competency questions:  
CQ1: Which instances of a data source suffer from data quality 
problems according to predefined data quality requirements? 
CQ1.1: Which instances of a given class contain values for a 
given property that match given illegal values?  

CQ1.2: Which instances of a given class contain values for a 
given property that do not match given legal values for that 
property? 

CQ1.3: Which instances of a given class with value combinations 
in two or more given properties do not match the legal value 
combinations for given tuples of properties of another given 
class?  
CQ1.4: Which instances of a given class have numeric values in a 
given property that fall outside a given closed or open interval of 
legal values? 
CQ1.5: Which instances of a given class have values in a given 
property that contain illegal characters or illegal syntactical 
patterns? 
CQ1.6: Which instances of a given class can be considered 
duplicates based on a given identity metric? 
CQ1.7: Which instances of a given class have non-unique values 
in a given property that must only contain unique values? 
CQ1.8: Which instances of a given class lack a value for a given 
mandatory property (e.g. empty string or null values)? 

CQ1.9: Which instances of a given class lack a given mandatory 
property? 
CQ1.10: Which instances of a given class are outdated? 

CQ2: What is the data quality state of a selected data source 
according to predefined data quality requirements? 

CQ2.1: How complete is the data for a given property in instances 
of a given class? 

CQ2.1.1: How many empty literals for a given property exist in 
instances of a given class? 

CQ2.1.2: How many instances within a given class exist that lack 
a given property? 

CQ2.1.3: How many instances must have a literal value for a 
given property? 
CQ2.2: How semantically accurate are the values of a given 
property in instances of a given class? 
CQ2.2.1: How many instances of a given class have semantically 
incorrect values for a given property? 
CQ2.2.2: How many instances of a given class are required to 
have semantically correct values for a given property? 

CQ2.3: How syntactically accurate are the values of a given 
property in instances of a given class? 

CQ2.3.1: How many instances of a given class have syntactically 
incorrect values for a given property? 



CQ2.3.2: How many instances of a given class must have 
syntactically correct values for a given property? 
CQ2.4: How current are the instances of a given class? 
CQ2.4.1: How many instances of a given class are outdated? 
CQ2.4.2: How many instances of a given class must be current? 

CQ2.5: How unique are the values of a given property in 
instances of a given class? 

CQ2.5.1: How many instances of a given class have non-unique 
values for a given property? 

CQ2.5.2: How many instances exist in a given class that must 
have unique values for a given property? 
CQ3: For which time-frame is the data quality rule valid? 
CQ4: Which rules are created by Person X? 
CQ5: Which rules are based on source Y? 
CQ6: Which rules have a confidence level above XY? 
CQ7: Which rules are task-dependent? 
CQ8: Which rules apply for task A? 
CQ9: When was the rule last modified? 

CQ10: Which data quality problems affect instances of class B 
and/or values of property X? 
CQ11: Which data quality rules can be used to filter data that 
meets the specified quality requirements? 
CQ12: Which rules can be applied for data cleansing? 

4. DOMAIN CAPTURE 
Based on the requirements specified in the previous section, we 
describe the conceptual elements for the representation of DQM-
relevant knowledge. Figure 1 shows an UML Class diagram that 
provides an overview of the conceptual elements. However, due 
to the early stage of the work, additional vocabulary elements, e.g. 
for the description of additional data quality rules, data cleansing 
rules, data quality problem types, or data quality dimensions, may 
be specified and added to the vocabulary as part of our future 
work. 

4.1 Classes for Data Quality Rules 
In this section, we describe the terms required to represent certain 
kinds of data quality rules. We identified the following data 
quality rule classes by analyzing typical data quality problem 
types on instance level as specified in [5-8]. 

Data Quality Rule: A data quality rule is an externally given 
directive or a consensual agreement that defines the content 
and/or structure that constitute high quality data instances and 
values. 

Duplicate Instance Rule: A duplicate instance rule is a data 
quality rule that specifies the properties which (in combination) 
uniquely identify an entity. I.e. if the properties of two or more 
different instances represent the same state, then the instances 
represent the same entity. Thus, the instances are considered to be 
duplicates.  
Legal Value Rule: A legal value rule is a data quality rule that 
specifies all values that a certain property is allowed to obtain. 
Legal value rules, therefore, refer to reference properties of 
classes that hold instances with all allowed values.  

Functional Dependency Rule: A functional dependency rule is a 
data quality rule that specifies legal value combinations for two or 
more properties that are allowed to occur within the same 
instance. Functional dependency rules refer to reference properties 
of classes that hold instances with all allowed value combinations. 
Legal Value Range Rule: A legal value range rule is a data 
quality rule that specifies the upper and/or lower boundary of 
numeric values that a certain property is allowed to obtain. 
Illegal Value Rule: An illegal value rule is a data quality rule that 
specifies the values that a certain property must not contain. 
Illegal value rules, therefore, refer to reference properties that 
hold all disallowed values. 
Illegal Value Range Rule: An illegal value range rule is a data 
quality rule that specifies the upper and/or lower boundary of 
valid numeric values. 
Outdated Instance Rule: An outdated instance rule is a data 
quality rule that specifies the point in time when an instance is no 
longer current. 

Expiry Rule: An expiry rule is an outdated instance rule that 
specifies classes which hold instances with an expiration date that 
must not exceed the current date and time. 

Update Rule: An update rule is an outdated instance rule that 
specifies the maximum timespan in which an instance has to be 
updated. 

Property Completeness Rule: A property completeness rule is 
an abstract data quality rule class for data quality rules that check 
the completeness of instances of a certain class regarding their 
property values. 

Missing Property Rule: A missing property rule is a property 
completeness rule that specifies a certain property that must exist 
in instances of a certain class. 
Missing Literal Rule: A missing literal rule is a property 
completeness rule that specifies a certain property that must have 
a literal value in instances of a certain class. 

Conditional Property Rule: A conditional property rule is a 
property completeness rule that specifies a certain property that 
must exist in a certain subset of instances of a certain class. 
Conditional Literal Rule: A conditional literal rule is a property 
completeness rule that specifies a certain property that must have 
literal values in a certain subset of instances of a certain class. 
Unique Value Rule: A unique value rule is a data quality rule 
that specifies that each value of a certain property must be unique 
in instances of a certain class. 

Syntax Rule: A syntax rule is a data quality rule that specifies the 
allowed characters and/or patterns for values for a certain property 
of instances of a certain class. 

4.2 Properties of Data Quality Rules 
In the previous section, we described the different classes of data 
quality rules. The properties for these classes can be roughly 
separated into global properties, i.e. properties that are inherent to 
every data quality rule, and specific properties, i.e. properties that 
belong to a subset of data quality rules.  

4.2.1 Global Properties 
In the following, we describe the properties that are applicable for 
every data quality rule type. 



Creator of the Rule: Every data quality rule is created by at least 
one agent. For provenance reasons, it is important to attach 
information about the rule’s creator. 

Source of the Rule: Data quality rules are usually based on 
information sources, such as real world perceptions, domain 

knowledge, policies, data standards, laws, personal or consensual 
decisions, etc. For provenance reasons, it is important to attach 
information about the rule’s source. 

Tested Class: The tested class property specifies the class that 
holds the instances that shall be tested for data quality problems. 

 
Figure 1. Overview about the DQM ontology1

                                                                    
1 The class dqm:DataQualityScores and its elements are not shown in the diagram due to space limitations 



Tested Property: The property that holds the values to be tested 
for data quality problems is called “Tested Property”. 

Validity: Sometimes data quality rules may be valid only for a 
limited period of time. Thus, it must be possible to define a start 
and end time for the validity period of the rule. 

Confidence: Sometimes rule creators are not sure about the 
correctness and completeness of data quality rules, while it must 
still be possible to express rules with uncertainty about their 
completeness and correctness. Thus, it should be possible to 
define a confidence level for each data quality rule indicating the 
confidence of the rule creator in the correctness and completeness 
of the rule. 
Last Modification: Since data quality rules may change over 
time, it shall be possible to identify the time of the last 
modification. 
Relevancy for Assessment: Not every data quality rule will be 
eligible for data quality assessment, e.g. due to immaturity, low 
precision, or lack of consensual understanding. Thus, it shall be 
possible to flag all rules whether they are relevant for data quality 
assessment. 

Relevancy for Information Filtering: Some data quality rules 
may be used to retrieve only data that meets the previously 
specified quality requirements. Thus, a property shall specify 
whether the data quality rule shall be used for information 
filtering. 

4.2.2 Specific Properties 
In the following, we describe the properties that belong to a subset 
of data quality rule classes: 

Trusted Class: Legal value rules and functional dependency rules 
require the specification of the trusted class as a reference that 
holds instances with legal values / legal value combinations.  

Trusted Property: A trusted property holds the values that serve 
as a trusted reference in legal value rules / functional dependency 
rules, e.g. to define legal values for a tested property. 

Blacklist Class: A blacklist class holds instances with values that 
are disallowed for a certain data set. Thus, illegal value rules refer 
to such classes over the blacklist class property. 

Blacklist Property: A blacklist property holds the values that are 
disallowed for a certain data set. 

Regular Expression: Regular expressions are a common means 
to express character ranges and other syntactic patterns. Thus, 
they can be used to express syntax rules and are, therefore, an 
important property of the syntax rules. 

Expected Update Interval: Update rules require the specification 
of an expected update interval which indicates the maximum 
duration between two data updates for instances of a class in order 
to be current. 

Conditional Property: Conditional property / literal rules only 
apply to a subset of instances of a specific class. To localize the 
relevant subset of the rule, it is necessary to specify the 
conditional property that holds the values that can be used to filter 
the relevant instances for the rule. This property is called a 
conditional property. 
Conditional Value: The value which can be used to select the 
relevant instances for conditional property / literal rules is 
specified via the conditional value property. 

Upper / Lower Limit: Legal / illegal value ranges can be 
determined via an upper and/or lower boundary to check whether 
the value lies inside or outside of the specified interval. Moreover, 
upper and lower limits may be used to determine a subset of all 
instances of a specific class via the values of a conditional 
property in cases of conditional completeness rules. 

4.3 Data Quality Problem Classification 
In the following, we describe the classes that can be used to 
classify data quality problems that can be discovered by data 
quality rules specified in the previous section. 
Data Quality Problem: A data quality problem occurs when a 
data value or a data instance does not meet the quality 
requirements. 
Syntax Violation: A syntax violation is a data quality problem 
that occurs when a data value contains disallowed characters or 
does not match a predefined pattern. 

Functional Dependency Violation: A functional dependency 
violation is a combination of different property values within the 
same instance that must not occur together. E.g. an instance 
describing the man “Peter Miller” has the value “Mr.” as its 
salutation property, but the value “female” as its gender. 

Illegal Value: An illegal value is a data value that must not be 
used for a property. 

Missing Element: A missing element is a data quality problem 
that occurs when schema elements, instances, or data values are 
missing, while required. 

Missing Property: A property is missing when an instance does 
not contain a specific property that is required. 

Missing Value: A missing value occurs when a property of an 
instance does not hold a value. This is very common in Semantic 
Web data that was automatically generated from existing sources 
in a template-based approach. 

Outdated Instance: An instance is outdated when it represents an 
outdated state of its corresponding real-world entity. 

Out Of Range Value: A value is out of range when it is not part 
of the legal value range or when it is part of the illegal value 
range. 

Duplicate Instance: Two or more instances are duplicates when 
they represent the same real world entity. 

Uniqueness Violation: A uniqueness violation occurs when two 
or more identical values are assigned to a property that requires 
unique values. 

4.4 Properties of Data Quality Problems 
In the following, we describe the properties required for the 
description of data quality problems.  

Affected Instance: An affected instance is the data instance that 
contains one or more data quality problems. 
Affected Class: An affected class holds one or more affected 
instances. 
Affected Property: An affected property specifies the property of 
a data instance that contains one or more data quality problems. 
Some data quality problems, such as functional dependency 
violations, have more than one affected property. 



Time of Identification: The time of identification specifies the 
date and time when the data quality problem was identified. 

4.5 Classes for Data Quality Assessment 
Data quality assessment in the understanding of this paper is the 
“process of assigning numerical and categorical values to 
information quality (IQ) dimensions” [9]. IQ dimensions in our 
understanding are thereby data quality dimensions that can be 
measured using data quality rules. Based on a summary by Batini 
et al. [10], we identified five basic dimensions that can be used to 
classify data quality scores which are assessable using the data 
quality rules specified above.  
Data Quality Assessment: Data quality assessment is an abstract 
class for data quality dimensions that can be used to structure 
scores that indicate the quality state of classes and/or properties. 
Completeness: Completeness is the “extent to which data are of 
sufficient breadth, depth, and scope for the task at hand” [3]. In 
terms of the Semantic Web we distinguish between property 
completeness and population completeness. 

Property Completeness: Property completeness is the degree to 
which values for a specific property or the property itself are not 
missing in entities of a specific class [cf. 11, 12]. 

Population Completeness: Population completeness is the degree 
to which all objects of a certain reference are represented in a 
specific class [cf. 11, 12]. 

Accuracy: Accuracy in the understanding of this paper is the 
degree to which a data value represents the desired state regarding 
syntax and semantics.  

Syntactic Accuracy: Syntactic accuracy is the degree to which 
data values of a property represent legal values and are free from 
syntax violations. 

Semantic Accuracy: Semantic accuracy is the degree to which 
the data values of an instance represent the correct state of an 
entity’s property. 

Uniqueness: Uniqueness is the degree to which properties and 
classes are free from duplicate values and instances. 
Entity Uniqueness: Entity uniqueness is the degree to which 
entities (that must be uniquely represented within a certain class) 
are unique. 
Property Uniqueness: Property uniqueness is the degree to 
which the values of a property (that must only contain unique 
values within instances of a certain class) are unique. 
Timeliness: Timeliness in the understanding of this paper is the 
degree to which instances of a specific class (1) are updated 
within an expected time or (2) have not exceeded their expiration 
date. 

4.6 Properties for Data Quality Assessment 
In the following, we describe the properties of data quality scores. 
Assessed Class: The assessed class holds the instances that have 
been analyzed to compute the assessment score. 
Assessed Property: The assessed property represents all 
properties that have been tested for rule violations during the 
computation of the assessment score. 
Plain Score: The plain score represents a data quality dimension 
score that was assessed by using a certain formula that accounts 
for the violations of data quality rules related to the size of the 

relevant data set. It can be computed by using the simple ratio 
which is calculated by subtracting the ratio between the total 
number of rule violations and the total number of relevant 
instances from one. The result ranges from 0 to 1 with 0 
representing the worst quality state and 1 representing a perfect 
quality state of the investigated data items [12]. 
Weighted Score: A weighted score is a data quality dimension 
score that is computed by the integration of the importance of the 
data quality rules for the task at hand and/or by the importance of 
the task the data is used for. 

Time of Assessment: The time of assessment represents the date 
and time when the data quality score was computed. 

4.7 Data Cleansing Rules 
In cases with unambiguous rules, it is possible to define data 
cleansing rules that can be used to automatically update all 
incorrect values in the original data source. In the following, we 
describe the classes and properties required for representing data 
cleansing rules. 

Data Cleansing Rule: A data cleansing rule is an unambiguous 
rule that precisely specifies the required state of a data value. 
Strict Value Combination Rule: A strict value combination is a 
combination of two values of different properties that may only be 
assigned to each other, but not to other values. 
Whitespace Removal Rule: A white space removal rule states 
that whitespaces at the beginning of a string and at the end of a 
string shall be removed for the specified property. 

Value Substitution Rule: A value substitution rule specifies a 
value to be removed and a new value that shall substitute the 
removed value. 
Data Cleansing: The data cleansing property specifies whether 
the rule shall be applied to cleanse the data in the data source. 
Current / New Value: The current / new value properties specify 
the value to be removed and the new value of value substitution 
rules. 
Furthermore, data cleansing rules inherit the properties (1) rule 
name, (2) tested class, (3) tested property, and (4) validity from 
the data quality rules class. 

4.8 Task Dependency 
Metrics for data quality assessment can be task-dependent or task-
independent. Task-independent rules are of general applicability, 
while task-dependent rules are only appropriate for certain tasks 
[12]. Hence, it must be possible to model a relationship between a 
data quality rule and its relevant tasks in cases where the rule is 
task-dependent. Moreover, the vocabulary must provide means to 
clearly identify task-independent rules. 

5. ONTOLOGY CODING 
We chose OWL2 for the design of the ontology, since we aim to 
provide a vocabulary for DQM in Semantic Web Architectures, 
want to be able to use OWL reasoners, and since OWL is widely 
used in the Semantic Web. We based the formalization of the 
ontology on the results of our domain capture. The UML class 
diagram depicted in figure 1 provides an overview of the DQM 
ontology, which currently consists of 45 classes and 56 properties. 
                                                                    
2 http://www.w3.org/TR/owl-features/ 
3 http://purl.org/net/provenance/ns# 



As a prerequisite, we avoided designing an OWL Full ontology, 
so that reasoning will still be decidable when the ontology is used. 
This forced us to create several datatype properties with datatype 
xsd:anyURI, since DQM requires to use class and property 
URIs as objects, which is otherwise not allowed in OWL DL. 
With this workaround we are able to express statements about 
ontology classes and properties, without disturbing the 
performance of reasoning. Before we created the DQM ontology, 
we analyzed existing ontologies for reusable classes and 
properties. For the description of rule creators, we suggest to 
combine the DQM vocabulary with the Provenance Vocabulary3, 
in particular with its data creation classes and properties. 
Alternatively, we can use the property dc:creator from the 
Dublin Core Metadata ontology4. In addition, we suggest to use 
the property dc:source for the description of the rule source. 

 
Figure 2. SPARQL query to classify syntax violations 

 

All other elements have been created in the dqm: namespace, 
since we could not find appropriate vocabulary elements in 
available ontologies. Regarding the representation of task 
dependency, the data quality management ontology is compatible 
to any task ontology, i.e. ontologies that describe tasks and 
processes. Such ontologies can be connected by using the object 
property dqm:dependsOn of the domain class 
dqm:DataQualityRule. Alternatively, we created the class 
dqm:Task with properties that represent relevant information for 
DQM for cases without an appropriate task ontology. 

6. PRELIMINARY EVALUATION 
We performed a preliminary evaluation of our approach using a 
small test data set containing artificially created data quality 

                                                                    
3 http://purl.org/net/provenance/ns# 
4 http://www.dublincore.org/2010/10/11/dcelements.rdf 

problems. We integrated the test data set with our DQM ontology 
and defined data quality rules about the classes and properties of 
the test data set. Also, we executed data quality problem 
classification queries over the data set. The query depicted in 
figure 2 classifies all syntax violations and adds RDF triples to the 
local graph. In a second step, we executed a data quality 
assessment query depicted in figure 3 that uses only explicitly 
flagged syntax rules to calculate syntactic accuracy. It is also 
imaginable to select only rules from a certain creator or a certain 
task above a certain confidence level for that purpose. The 
SPARQL queries thereby only depend on vocabulary elements of 
the DQM ontology, so that the queries are applicable on any data 
set. Due to the use of OWL datatype properties, we had to make 
the URI’s dereferencable again using a SPARQL extension 
function.  

 
Figure 3. Computation of syntactic accuracy for all classes 
and properties specified in instances of dqm:SyntaxRule 

7. RELATED WORK 
At present, we do not know of a comprehensive standard 
vocabulary to represent DQM information in Semantic Web 
environments. However, there are a few approaches that are 
related. The SPARQL Inferencing Notation (SPIN) provides a 
vocabulary that allows the representation of SPARQL queries in 



RDF. In [13] we have shown how SPIN can be used to represent 
data quality rules. Although SPIN is very useful for representing 
SPARQL-based rules in RDF, a specialized vocabulary for DQM 
provides more guidance and is better fitted to the requirements. 
The Web Information Quality Assessment Policy Language 
(WIQA-PL) is based on SPARQL grammar and facilitates the 
definition of information filtering policies allowing data 
consumers to retrieve only information that meets their quality 
requirements expressed in WIQA-PL. The major drawback of this 
approach is that the quality requirements are not represented in 
RDF itself. Hence, the management of the policies may become 
very complex as the amount of policies is growing. Moreover, it 
requires a framework that can deal with WIQA-PL. Recently there 
have been a couple of provenance vocabularies published that 
shall provide metadata for data quality assessment. For instance, 
Hartig and Zhao published the Provenance Vocabulary1 and 
showed how to assess timeliness with the help of provenance 
information [14]. The Provenance Vocabulary is focused on 
representing metadata about the creation and access of data rather 
than directly representing quality requirements. The DQM 
Ontology could complement the Provenance Vocabulary and 
might cover most information required for the holistic 
management of data quality. Finally, the Object Management 
Group has published a vocabulary for representing the Semantics 
of Business Vocabulary and Business Rules (SBVR) to facilitate 
the standard expression of policies and compliance rules [15]. Due 
to its focus on business rules, SBVR misses vocabulary elements 
that are specifically required for DQM. 

8. Conclusions and Outlook on Future Work 
In this paper, we have proposed a generic vocabulary that 
facilitates the representation of knowledge required for data 
quality monitoring, data quality assessment, data cleansing, and 
quality-driven data retrieval in Semantic Web architectures. The 
vocabulary was designed so that standard SPARQL queries can 
process the knowledge to automate these activities and, therefore, 
reduce manual effort. Due to the standardized representation of 
quality requirements in RDF/OWL, it is possible to capture, 
manage, and share data quality requirements and check their 
consistency. This enables us to create a consensual understanding 
about data quality and helps reusing data quality knowledge. Due 
to its early stage, the current version of the DQM ontology may 
still miss important elements. However, we will continue the 
application of the proposed vocabulary on real-world settings to 
discover further extensions and improvements. Moreover, it is 
planned to publish the DQM ontology at http://semwebquality.org 
for public usage. 
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