
Currency Conversion the Linked Data Way

Alex Stolz and Martin Hepp

E-Business and Web Science Research Group, Universität der Bundeswehr München
Werner-Heisenberg-Weg 39, D-85577 Neubiberg, Germany

{alex.stolz,martin.hepp}@ebusiness-unibw.org

Abstract. In many business applications that could be built on the basis of
Linked Open Data, the conversion of monetary amounts from one currency to
another is a much-needed functionality. For example, hotel prices in a compari-
son shopping application may have to deal with prices given in differing cur-
rencies. While currency conversion APIs exist on the Web, their integration into
operations over RDF data is still burdensome and requires proprietary code. In
this paper, we propose to integrate currency conversion functionality from open
Web APIs into the Linked Open Data (LOD) cloud in a conceptually clean,
scalable way that (1) adheres to the LOD design guidelines, (2) removes the
need for proprietary code, (3) can be accessed from client-side JavaScript, and
(4) works with any standard SPARQL processor that is able to retrieve a RDF
representation by dereferencing a resource URI. We argue that our solution
serves as a good generic pattern for integrating Web APIs into the LOD cloud,
beyond the practical relevance of the concrete implementation.

Keywords: Exchange rates, currency conversion, ISO 4217, linked data, LOD,
RDF, SPARQL, JavaScript, Web APIs

1 Introduction

The integration of multiple data sources on the Web of Linked Data implies col-
lecting data with heterogeneous representations in terms of data formats, structures
and semantics. Structured data on the Web may appear in different formats such as
RDFa, Microdata, Turtle, N-Triples or RDF/XML. Furthermore, it may represent
similar facts by using distinct Web vocabularies, and draw on varying element codes
within standards (meter vs. feet, gram vs. kilogram, U.S. dollar vs. Euro, etc.). Ac-
cordingly, unit codes published on the Web often show regional and application-
specific differences. In the context of currency conversions for example, while finan-
cial transactions within countries are typically conducted using domestic currencies
(e.g. Yen in Japan, Swiss franc in Switzerland), international trade is predominated by
monetary exchanges based on global/world currencies, namely U.S. dollar and Euro.

For better interoperability between applications, an internationally recognized rep-
resentation of currencies was established, i.e. the ISO 4217 standard [12]. The three-
letter currency codes defined in that standard are well known and widely accepted by
businesses and business applications. Euros, for example, are represented by the cur-

rency code EUR, whereas GBP describes British pounds and USD denotes U.S. dol-
lars. According to the currency code table1 published in ISO 4217 [12], as of today at
least 180 accepted currencies exist world-wide. Currency codes, if they co-occur with
price values, serve to disambiguate monetary amounts. In particular, they can help to
distinguish prices by independent bodies such as companies operating in different
countries and/or trading with different partners. The value of a currency with respect
to another currency is determined by the currency exchange rate. On the foreign ex-
change market, the exchange rate is determined by a currency pair (e.g. USD/EUR)
that consists of a base (primary, transaction, quoted) currency and a counter (second-
ary, reference, quote) currency. Large institutions, such as Citibank, publish latest
exchange rates on a regular basis. Currency conversion services on the Web then take
advantage of these exchange rates, offering translations of monetary amounts availa-
ble in different currencies. Providers of currency conversion services encompass
online portals like OANDA, XE or Reuters, but also search engines like Google and
Yahoo. Furthermore, dedicated Web APIs2 for currency conversion are available.

In many business applications that could be built on the basis of Linked Open Data
[2, 4, 10], the conversion of monetary amounts from one currency to another is a
much-needed functionality. If a comparison shopping website of hotel prices is re-
quired to compile a list of the n cheapest hotel room offers relative to the preferred
currency of the user, it will likely have to deal with prices declared in a number of
currencies. Despite the existence of currency conversion APIs on the Web, their inte-
gration into operations over RDF data is still burdensome and requires proprietary
code. Up to now, SPARQL support for external Web services is poor. Even if some
query engines could be extended to invoke external Web services using proprietary
functions, SPARQL implementations in general do not offer a straightforward and
generic way to realize on-the-fly currency conversions over RDF data.

In this paper, we propose to integrate currency conversion functionality from open
Web APIs into the Linked Open Data (LOD) cloud in a conceptually clean, scalable
way. In particular, we present an online service for exchange rates that (1) adheres to
the LOD design guidelines, (2) removes the need for proprietary code, (3) can be
accessed from client-side JavaScript, and (4) works with any standard SPARQL pro-
cessor that is able to retrieve a RDF representation by dereferencing a resource URI.
We argue that our solution serves as a good generic pattern for integrating Web APIs
into the LOD cloud, beyond the practical relevance of the concrete implementation.
We show how our approach enables to easily convert between prices in RDF, thus
making products and services comparable irrespective of the currencies used.

The rest of the paper is organized as follows: Section 2 presents our approach, ad-
dressing its most important features and implementation details; in Section 3 we show
how our proposal can be used with real datasets; Section 4 discusses our contribution
with respect to relevant previous efforts to provide currency and unit conversions in
the context of the Semantic Web; finally, Section 5 concludes the paper.

1 http://www.currency-iso.org/content/dam/isocy/downloads/dl_iso_table_a1.xml currently lists

182 distinct currencies.
2 https://openexchangerates.org/

2 Exchange Rates for Linked Open Data

In this section, we propose a RESTful [8] Web service for currency exchange rates
intended for the integration into the LOD cloud. Our approach is based on two main
building blocks. Firstly, we propose an OWL ontology that provides the means to
model currency exchange rates in RDF. Secondly, we present a Web service that we
put online to serve RDF representations populated with exchange rates, constantly
refreshed by means of a Web API for currency conversions. We also present the sup-
ported URI patterns, content negotiation, and how we ensure reliable caching.

2.1 Exchange Rate Ontology

The schema (vocabulary, data dictionary, ontology) underlying our approach is de-
fined in terms of the Exchange Rate Ontology (XRO, prefixed with xro:), which lan-
guage description is available online3. The UML diagram depicted in Fig. 1 describes
the conceptual model of the vocabulary.

Fig. 1: UML class diagram of the Exchange Rate Ontology

ExchangeRateInfo represents the core class of the Exchange Rate Ontology and
provides the exchange rate to a given currency pair. Every currency pair consists of a
base and a counter currency, as represented in the model by two properties pointing to
the Currency class of DBPedia4. Harnessing currency instances defined in DBPedia
can provide useful additional information about currencies that could be queried. The
ExchangeRateInfo class consists of three attributes, namely timeOfConversion, rate
and inverseRate. The attribute rate describes the actual exchange rate value of two
currencies, whereas inverseRate is a convenience attribute and embodies the inverse
value of rate. The timestamp value pointed at by timeOfConversion can be used to
determine the creation date of the class instance. Human-readable descriptions using
rdfs:label and rdfs:comment may further refine the ExchangeRateInfo class. In order
to supply basic provenance information about the conversion, one could optionally
provide a URI of the conversion API and/or supply the publishing institution (e.g.
Federal Reserve Bank, Citibank, etc., using the corresponding DBPedia resource

3 http://purl.org/xro/
4 http://dbpedia.org/

xro:timeOfConversion xsd:dateTime
xro:rate xsd:decimal
xro:inverseRate xsd:decimal
rdfs:label rdfs:Literal
rdfs:comment rdfs:Literal

xro:ExchangeRateInfo
dbprop:isoCode xsd:string
...

dbpedia-owl:Currencyxro:base

xro:counter

Conversion Service URI

dcterms:source

schema:Organization

xro:publisher
0..1 0..1

URI) of the exchange rate. As an extension to the model outlined above, one might
also consider to take into account the place of trade (e.g. New York Stock Exchange,
Philadelphia Stock Exchange), type of transaction (e.g. cash or non-cash), or type of
market (interbank, spot, forward, etc.) with potential future prices and delivery dates.
However, for the sake of simplicity, the current model does not cover such aspects.

The following listing gives an example of the vocabulary usage in N3 format, pop-
ulated with Euro and U.S. dollar as the base and counter currencies:

@prefix dbpedia: <http://dbpedia.org/resource/> .
@prefix dcterms: <http://purl.org/dc/terms/> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xch_EUR: <http://www.currency2currency.org/EUR#> .
@prefix xro: <http://purl.org/xro/ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

xch_EUR:USD a xro:ExchangeRateInfo;
 rdfs:label "Euros to U.S. dollar"@en;
 rdfs:comment "1 EUR = ? USD"@en;
 xro:base dbpedia:Euro;
 xro:counter dbpedia:United_States_dollar;
 xro:rate "1.31010"^^xsd:decimal;
 xro:inverseRate "0.7633010"^^xsd:decimal;
 dcterms:source <http://www.google.com/ig/calculator?hl=en&q=1EUR=?USD>;
 xro:timeOfConversion "2013-04-11T00:00:02Z"^^xsd:dateTime .

The example in the listing above indicates that we used the source property of the
dcterms vocabulary to add provenance information to the RDF dataset, thus allowing
to keep track of the Web API that generated the exchange rates. The dterms:source
property turned out to be appropriate for our provenance needs, being defined as a
“related resource from which the described resource is derived“ [6].

2.2 Web Service for Exchange Rates

Fig. 2 outlines the conceptual architecture of the exchange rate service for Linked
Open Data. The service is based on the Exchange Rate Ontology, and equipped with
sophisticated storage and caching strategies for resource-saving and fast delivery. It
has been developed as a Google App Engine application and was deployed online5.

Fig. 2: Conceptual architecture of the Exchange Rates service for LOD

5 http://www.currency2currency.org/

Currency
Conversion API

Exchange
Rates for LOD

RDF

request update

Data Store

Cache

XRO

(1)

Our Web service pulls its exchange rates from the unofficial6 Google Calculator
service that, again, procures the exchange rates from Citibank. The currency conver-
sion service returns a JSON (JavaScript Object Notation) [5] string in response to the
URI pattern provided by the following example, which calculates the exchange rate of
Euro with respect to U.S. dollar:

http://www.google.com/ig/calculator?hl=en&q=1USD=?EUR

At present, exchange rates for roughly 80 currencies are supported. Due to the
symmetry between exchange rates, only about 80 service requests to the currency
conversion API are necessary to calculate all possible combinations of exchange
rates. The explanation for this is that given a base currency (BASE), the exchange rate
between currencies A and B (A2B) can be derived from the ratio of the exchange rates
of the two currencies relative to the base currency (A2BASE and B2BASE), as charac-
terized by the formula given below:

𝑟𝑎𝑡𝑒!!! =
𝑟𝑎𝑡𝑒!!!"#$
𝑟𝑎𝑡𝑒!!!"#$

A cron job scheduled for everyday at midnight (server time zone) takes care of pe-
riodic updates of the currency exchange rates. Old exchange rates are properly ar-
chived and can be requested any time, as we will see in the upcoming Section 2.3.
The subsequent sections will then discuss content negotiation and caching.

2.3 URI Pattern

The service distinguishes between multiple URI patterns, each serving a different
purpose. The supported URIs obey the basic idea of cool URIs [1, 18], as such being

• Simple: Mnemonic, memorable names for URIs,
• Stable: Hiding implementation details, subject to change as technology advances,
• Manageable: Manageable, stable URIs over time.

The service uses three basic URI patterns: the first delivers the exchange rate be-
tween two particular currencies; the second lists all exchange rates with respect to a
given base currency; and the third yields a full dump of all exchange rates.

The most efficient and lean method of taking advantage of the service is to request
the exchange rate of a specific currency pair. The placeholders base and counter indi-
cated in the URI pattern below have to be replaced by valid ISO 4217 currency codes:

http://www.currency2currency.org/<base>/<counter>

A more costly, yet more powerful way is to list all exchange rates with respect to a
given base currency. This method will meet most requirements, since all possible
combinations of exchange rates can be computed out of it. The respective URI pattern
is composed as follows:

6 Google Calculator service is not officially sanctioned. However, the specific calculator API is

irrelevant for the proper functioning of our service and could be replaced easily.

http://www.currency2currency.org/<base>

The omission of any currency codes in the URI pattern produces a complete RDF
dump. The huge RDF graph consists of a materialization of all possible combinations
of currency pairs, i.e. n2 currency exchange rates for n currencies:

http://www.currency2currency.org/

The three basic URI patterns can be expanded with an optional date string
(YYYYMMDD, e.g. 20130411), which causes the service to return a snapshot for that
particular date. This can be useful for looking up historical data about exchange rates:

<uri>/YYYYMMDD

The two URIs indicated below both give the same result if retrieved on April 11,
2013. However, if accessed on different dates, they will describe distinct datasets:

http://www.currency2currency.org/USD/EUR

http://www.currency2currency.org/USD/EUR/20130411

The base URIs used for identifying the instances of ExchangeRateInfo in RDF are
irrespective of the request URI. The URI pattern is hash-based of the form

http://www.currency2currency.org/<base>#

For instance, the exchange rate between U.S. dollar and Euro is described by

http://www.currency2currency.org/USD#EUR

2.4 Content Negotiation

The service uses HTTP content negotiation ([7], Section 12) to serve various RDF
serializations via a single URI, negotiated based on the media type supplied in the
HTTP request header. A client application can use proper HTTP Accept-headers ([7],
Section 14.1), potentially including quality factors for ranking preferences, to indicate
its preferred RDF materialization of exchange rates. The following media types are
currently supported: HTML, and a series of RDF serializations, namely RDF/XML,
N3, Turtle, RDF/JSON and N-Triples. Table 1 shows correspondences between media
types and serialization formats as recognized by the Web service. The second column
denotes the media types that the service accepts, the third column the returned content
types. Generally, if a media type preference is invalid, unsupported or missing, the
service will return HTML with its corresponding content type. Accordingly, entering
the URIs of the types presented in Section 2.3 into a Web browser results in a human-
readable HTML description of the respective pages together with usage instructions.

The following curl command fetches exchange rates relative to Swiss francs in N3:

curl -H "Accept: text/n3;q=1.0" http://www.currency2currency.org/CHF

The HTTP response header returned by the server then looks as follows:

Table 1: Mapping of serialization formats and media types

Serialization format Media types accepted
Accept:

Content type delivered
Content-Type:

HTML not available
text/html
application/xhtml+xml

text/html

RDF/XML application/rdf+xml
application/xml

application/rdf+xml

N3 text/n3
text/rdf+n3
application/n3

text/n3

Turtle text/turtle
application/x-turtle

text/turtle

RDF/JSON application/json
text/rdf+json
text/javascript

application/json

N-Triples text/plain text/plain

HTTP/1.1 200 OK
Content-Location: http://www.currency2currency.org/CHF
Access-Control-Allow-Origin: *
Vary: Accept
Cache-Control: max-age=3600, must-revalidate
Content-Type: text/n3
Content-Length: 31602
Date: Thu, 11 Apr 2013 10:31:55 GMT

The header determines that the page could be retrieved successfully. The content
type is text/n3 that corresponds to the expected media type according to Table 1. Fur-
thermore, the header field Vary indicates to the client that the value of the request
header field Accept supplied by the client was considered to select among multiple
representations ([7], Sections 14.1 and 14.44). In that sense it constitutes a nice exam-
ple of the identity axiom in Web architecture [3]. The identity axiom states that the
identity for a URI is determined by the owner of the resource and not imposed by the
technology, and that the existence of different representations for the same URI
should be signaled appropriately, i.e. using the Vary response header field. Another
notable header information returned by the server is that cross-origin resource sharing
(CORS) [13] is enabled (Access-Control-Allow-Origin: *), meaning that JavaScript
clients can take advantage of the response message irrespective of the same origin
security policy enforced by most Web browsers.

If a requested page does not (yet) exist, the service will reply with a plain error
page and indicate it with a status code 404 Not Found in the HTTP response header.

2.5 Caching and Expiry

As already depicted in Fig. 2, the service takes advantage of a data store (compara-
ble to a database, but schemaless) and advanced caching of datasets at three levels,

(2)

namely client cache, memcache, and file storage (cf. Table 2). The type of caching
strategy chosen addresses the peculiar natures of the different-sized RDF datasets,
which ensures an efficient dealing with subsequent client requests; it fosters timely
responses and reduces the server load.

Table 2: Comparison of storage and caching mechanisms

 Data store Client cache Memcache File store7
Type NoSQL (sche-

maless) object
data store

Local cache
of client
application

Distributed
memory object
caching system

Data object
store for large
files

Expiry Never After 1 hour After 6 hours Never
Update fre-
quency

Daily Cache life-
time expired

Cache limits or
lifetime reached

Daily

Memory lim-
its

Limited to stor-
age capacity of
used data type

Unlimited,
application-
dependent

1 Megabyte Limited to data
transfer limit

Intended
usage

Daily updated list
of exchange rates

Downloaded
page contents

Small-sized, partial
RDF serializations

Complete RDF
dumps

The data store records exchange rates of a particular date, while the caches take

care of a timely and resource-saving delivery of the respective RDF [15] representa-
tions. While smaller-sized datasets (i.e. exchange rates relative to a base currency or
between a currency pair) are kept in memcache for a specific time, bigger datasets
(complete RDF dumps) that easily exceed the maximum memcache size (e.g. one
megabyte) are pre-fetched on a daily basis, immediately after the update of exchange
rates becomes available, and then stored in the data cloud. Caching on client side
complements caching at the server by providing HTTP response headers with cache
lifetime values (cf. Section 2.4) that instruct client applications to cache contents for
an indicated time period, e.g. an hour (3600 seconds).

Cache-Control: max-age=3600, must-revalidate

The records in the data store and the permanent storage of dump files permit to
cache historic data for a longer period, thus to keep track of exchange rates over time.

3 Usage Scenario

In this section, we present an example in SPARQL 1.1 [9] that uses our LOD ex-
change rate service to turn arbitrary price values into corresponding prices based on a
particular currency. The formula that applies for this purpose is provided by

𝑝𝑟𝑖𝑐𝑒! = 𝑟𝑎𝑡𝑒!!!"#$ ∙ 𝑝𝑟𝑖𝑐𝑒!"#$
where BASE denotes the base currency, and A represents an arbitrary currency A.

7 In the context of Google App Engine, it is called Blobstore.

For our example, we took a collection of Web shops that offer products and ser-
vices in GoodRelations [11], expressed using different prices and currencies. The goal
is to normalize prices, i.e. to provide a means to operate with prices based on a com-
mon currency. This will enable us to sort items based on price values and to return the
n cheapest offers (cf. Section 1). We assume that all Web shop data and exchange
rates related to U.S. dollar8 have already been loaded into the SPARQL endpoint.
However, SPARQL 1.1 [9] added federated query support to facilitate queries that
include data of remote SPARQL endpoints. Some SPARQL endpoints, e.g. Virtuoso
Open Source9, actually provide means for fetching remote RDF data on the fly, even
though this feature is commonly discouraged for production use due to security risks.
The following listing shows the SPARQL query for currency conversion:

PREFIX gr: <http://purl.org/goodrelations/v1#>
PREFIX xro: <http://purl.org/xro/ns#>
PREFIX dbpedia: <http://dbpedia.org/resource/>
PREFIX dbpprop: <http://dbpedia.org/property/>

SELECT DISTINCT ?price ?code (?price/?rate AS ?base_price) ?base_code
WHERE {
 ?s a gr:Offering; gr:hasPriceSpecification ?pspec .
 ?pspec gr:hasCurrency ?code; gr:hasCurrencyValue ?price .
 ?xrate xro:rate ?rate;
 xro:base ?base_currency; xro:counter ?counter_currency .
 ?base_currency dbpprop:isoCode ?base_code .
 ?counter_currency dbpprop:isoCode ?counter_code .
 FILTER(str(?counter_code) = str(?code))
}
ORDER BY ?base_price LIMIT 5

The query seeks price values and currency codes of items in the dataset, for both
the original and the converted price. For that it selects proper exchange rates from the
RDF graph, which as we know are all relative to USD. In particular, it matches the
currency code of every item with the corresponding currency codes of DBPedia in-
stances. They, again, can be used to pick the associated exchange rates from the da-
taset. Table 3 lists the five results compiled from a real dataset10 by executing the
query outlined above. The results returned by the endpoint contrast original price and
currency (U.S. dollar and Romania Leu) with target price and currency (U.S. dollar).

Table 3: SPARQL query results of a currency conversion

price code base_price base_code
0.0 USD 0.0 USD
1.29 RON 0.38123885 USD
1.93 RON 0.5703806 USD
2.58 RON 0.7624777 USD
3.13 RON 0.92502147 USD

8 USD exchange rates as of 10.04.2013: http://www.currency2currency.org/USD/20130410
9 http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/
10 The data was extracted from a collection of Web shops with RDFa markup and is privately

maintained by the E-Business and Web Science Research Group.

The SELECT query in the example could easily be altered to CONSTRUCT que-

ries over the whole dataset, i.e. to normalize all available prices and return them for
being consumed by other RDF-capable applications.

4 Discussion

In this section, we review and compare existing alternatives with our own proposal.

4.1 Related Work

Despite the availability of numerous Web APIs for currency conversion on the
Web, the most relevant works to our proposal are conversion approaches aimed for
the Semantic Web. To the best of our knowledge, there exist no RDF-based Web
services dedicated to exchange rates. However, modeling of currency exchange rates
was sometimes addressed as part of other modeling tasks, e.g. comprised in vocabu-
laries for units of measurement. QUDT11 is a vocabulary for quantities, units, dimen-
sions and types, but also includes currency units for all of the world’s currencies. The
vocabulary subset for currencies is similar to our approach. QUDT is targeted for use
with the SPIN12 (SPARQL Inferencing Notation) engine. Accordingly, currency con-
version is done using the most recent exchange rates that are retrieved by invoking a
SPIN function to call an external API [14]. Another effort to model quantities and
units of measurement in OWL is the Ontology of Units of Measure and Related Con-
cepts (OM) [17]. However, unlike QUDT, OM does not support currency units. In the
context of the European LOD2 project13, a dataset with exchange rates relative to
Euro was published in RDF. The currency exchange rates are available from a
SPARQL endpoint14 and contain historical data about exchange rates.

4.2 Our Contribution

As opposed to existing approaches, which are mostly limited to provide a data
model for currency conversion and units of measurement, we suggest a fully-fledged
framework that consists of a Web vocabulary for exchange rates and a RDF-based
service for currency conversions based on current or historical exchange rates. Our
service could serve as an authoritative source of exchange rates compliant with
Linked Open Data. For example, it adheres to the Linked Data design principles as
stated in [2]: (1) every exchange rate entity obtains a named URI, (2) exchange rates
can be looked up easily because relying on HTTP URIs, (3) when someone looks up a
URI of an exchange rate, useful information is displayed to humans and machines

11 http://www.qudt.org/
12 http://spinrdf.org/
13 http://lod2.eu/
14 http://linked.opendata.cz/sparql

alike, enabled by content negotiation that returns either HTML or RDF descriptions,
and (4) the dataset provides links to other datasets, e.g. to currency instances of
DBPedia, to discover additional things.

In contrast to traditional Web APIs, our approach is ready-to-use for the Web of
Data, i.e. users are not expected to provide proprietary code and can integrate the
RDF representation instantly into their RDF-aware applications. The service is acces-
sible to JavaScript applications by sending proper CORS HTTP headers.

Our proposal is not limited to the domain of currency conversion. It could likewise
be applied to other fields relevant for inclusion in the LOD cloud. For that purpose it
would be sufficient to replace the domain model and the Web service of our approach
by equivalents in the target domain.

4.3 Future Extensions

Our proposal could of course benefit from future extensions. On the conceptual
side, we envision to extend the Exchange Rate Ontology model with additional do-
main-related properties and concepts, as already indicated in Section 2.1.

On the technical part, our approach could benefit from hosting the currency ex-
change rate data in a RDF store, which would empower SPARQL-1.1-capable end-
points to execute federated SPARQL queries without having to import the currency
exchange rate dataset first.

Furthermore, the service could be made operable with different Web services,
thereby introducing an additional level of trust and better accuracy by taking ad-
vantage of multiple currency converters. The provenance information about the
source API contained in the RDF graph could provide a helpful starting point for this.
The planned model enhancements could then contribute additional granularity.

5 Conclusion

It is difficult to ensure interoperability across multiple data sources. This is also
true for prices and currencies in the Linked Open Data (LOD) cloud. However, in
order to do useful product matchmaking [16], it is indispensable to have a uniform
view on such data, since prices are among the most decisive buying criteria in e-
commerce. While currency conversion APIs exist on the Web, their integration into
operations over RDF data still involves significant manual effort.

To overcome this limitation, we proposed a way to integrate currency conversion
functionality from open Web APIs into LOD. For this purpose we introduced a con-
ceptual schema for currency exchange rates and complemented it with a RESTful
Web service for exchange rates in RDF, which again takes advantage of freely availa-
ble currency converter APIs on the Web. The benefits of our approach can be summa-
rized as follows: our service adheres to LOD design principles, it eliminates the need
for writing proprietary code, it is accessible to latest Web technologies (e.g. JavaS-
cript), and compatible with standard SPARQL processors. In addition, it employs
caching and storage of exchange rates while keeping track of historical data. Thus we

suggest that our approach could serve as a generic pattern for integrating open Web
APIs into LOD, such as services for unit conversion or product review data that could
add important value to better e-commerce matchmaking. As a proof of concept for
our proposal, we showed how easy it is to accomplish currency conversions in
SPARQL environments by taking advantage of our service.

Acknowledgments. Parts of the work presented in this paper have been supported by
the German Federal Ministry of Research (BMBF) by a grant under the KMU Innova-
tiv program as part of the Intelligent Match project (FKZ 01IS10022B).

References

1. Berners-Lee, T.: Cool URIs don’t change, http://www.w3.org/Provider/Style/URI
2. Berners-Lee, T.: Linked Data - Design Issues,

http://www.w3.org/DesignIssues/LinkedData.html
3. Berners-Lee, T.: Universal Resource Identifiers -- Axioms of Web Architecture,

http://www.w3.org/DesignIssues/Axioms.html
4. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. International Jour-

nal on Semantic Web and Information Systems. 5, 3, 1–22 (2009)
5. Crockford, D.: The application/json Media Type for JavaScript Object Notation (JSON),

http://www.ietf.org/rfc/rfc4627.txt
6. Dublin Core Metadata Initiative Usage Board: DCMI Metadata Terms,

http://dublincore.org/documents/2012/06/14/dcmi-terms/
7. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T.:

RFC 2616: Hypertext Transfer Protocol -- HTTP/1.1, http://www.ietf.org/rfc/rfc2616.txt
8. Fielding, R.T.: Architectural Styles and the Design of Network-based Software Architec-

tures. PhD thesis. University of California, Irvine (2000)
9. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language, http://www.w3.org/TR/sparql11-

query/
10. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space. Morgan &

Claypool (2011)
11. Hepp, M.: GoodRelations: An Ontology for Describing Products and Services Offers on

the Web. Proceedings of the 16th International Conference on Knowledge Engineering and
Knowledge Management (EKAW2008). pp. 332–347. Springer, Acritezza, Italy (2008)

12. ISO: ISO 4217:2008: Codes for the representation of currencies and funds. (2008)
13. Van Kesteren, A.: Cross-Origin Resource Sharing, http://www.w3.org/TR/cors/
14. Knublauch, H.: Currency conversion with the Units Ontology, SPARQLMotion and SPIN,

http://composing-the-semantic-web.blogspot.it/2009/09/currency-conversion-with-units-
ontology.html

15. Manola, F., Miller, E.: RDF Primer, http://www.w3.org/TR/rdf-primer/
16. Di Noia, T., Di Sciascio, E., Donini, F.M., Mongiello, M.: A System for Principled

Matchmaking in an Electronic Marketplace. Proceedings of the 12th International World
Wide Web Conference (WWW 2003). pp. 321–330. ACM, Budapest, Hungary (2003)

17. Rijgersberg, H., Van Assem, M., Top, J.L.: Ontology of units of measure and related con-
cepts. Semantic Web. 4, 1, 3–13 (2013)

18. Sauermann, L., Cyganiak, R.: Cool URIs for the Semantic Web,
http://www.w3.org/TR/cooluris/#cooluris

