
SKOS2OWL: An Online Tool for Deriving OWL and RDF-S
Ontologies from SKOS Vocabularies

Martin Hepp and Andreas Radinger
E-Business & Web Science Research Group, Universität der Bundeswehr München

Werner-Heisenberg-Weg 39
D-85579 Neubiberg, Germany

+49-89-6004-4217
mhepp@computer.org; andreas.radinger@ebusiness-unibw.org

ABSTRACT
Hierarchical classifications are available for many domains of
interest. They often provide a large amount of categories and
some sort of hierarchies. Thanks to their size and popularity, they
are promising input for putting data on the Semantic Web.
Unfortunately, they can mostly not directly be used as ontologies
in OWL, because classifications are not (or at least: very bad)
ontologies. In particular, the labels in categories often lack a
context-neutral notion of what it means to be an instance of that
category, and the meaning of the hierarchical relations is often not
a strict subClassOf. SKOS2OWL is an online tool that allows
deriving consistent RDF-S or OWL ontologies from most
hierarchical classifications available in the W3C SKOS exchange
format. SKOS2OWL helps the user narrow down the intended
meaning of the available categories to classes and guides the user
through several modeling choices. In particular, SKOS2OWL can
draw a representative random sample of relevant conceptual
elements in the SKOS file and asks the user to make statements
about their meaning. This can be used to make reliable modeling
decisions without looking at every single element, which would
be unfeasible for large classifications.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods

General Terms
Human Factors, Languages

Keywords
Classifications, SKOS, GenTax, Ontology Learning, Non-
Ontology Resources

1. INTRODUCTION
SKOS2OWL1 is an online tool that converts hierarchical
classifications available in the W3C SKOS (Simple Knowledge
Organization Systems) format into RDF-S or OWL ontologies. In
many cases, the resulting ontologies can be used directly. If not,
they can be refined using standard ontology engineering tools like
e.g. Protégé. SKOS2OWL uses the GenTax algorithm described
in [1] for deriving either an RDF-S or an OWL ontology from
most hierarchical classifications available in the SKOS exchange
format.

The GenTax algorithm is an approach for deriving consistent
RDF-S and OWL ontologies from hierarchical classifications. It
allows for the script-based creation of meaningful ontology

1 http://www.heppnetz.de/projects/skos2owl/

classes for a particular context while preserving the original
hierarchy, even if the latter is not a real subsumption hierarchy in
this particular context. Human intervention in the transformation
is limited to checking some conceptual properties and identifying
frequent anomalies, and the only input required is an informal
categorization plus a notion of the target context. GenTax was
developed by Hepp and de Bruijn and first described in [1].

One key property of the approach is that it suggests using
representative random samples of the overall classification for
choosing appropriate modeling alternatives. This minimizes the
amount of human intervention while guaranteeing that the amount
of inconsistent elements is below a threshold to be chosen by the
user. In the following, we briefly describe the approach:

First, we assume that a hierarchical categorization schema is a
directed graph where nodes represent categories and edges
represent the "broader term" or "has super-category" relation.
Depending on the context, a set is related to each category. This
set represents the items associated with the category in a particular
context.

This holds for many hierarchical Knowledge Organization
Systems, e.g. the directory structures on our computers or
standardized products and services classifications like the
UNSPSC.

An important observation is that the same hierarchy can be used
in different contexts with varying semantics of the categories and /
or varying semantics of the hierarchy relations. A raw category
itself has a very broad meaning, approximately that of "Anything
that can in any reasonable context be subsumed under the given
label". In application contexts, however, people often assume a
much narrower meaning for each category - e.g. either products of
a certain type, employees that have expertise in a certain area, or
invoices that refer to a certain type of goods.

As long as the context of usage is known to both the one who
assigns data to those categories and the one who interprets this
data, this does not cause problems. On the Semantic Web,
however, we need ontology classes (concepts) that have a context-
independent meaning - when we search for TV sets, we may want
to find actual TV sets only and not images of TV sets or invoices
of TV sets.
Now, useful ontologies from hierarchical categorizations for the
Semantic Web require that we derive ontology classes from the
categories so that the classes have a clearly defined meaning, i.e.
so that they don’t tangle completely different types of objects. At
the same time, we may want to preserve the original hierarchical
order, since it can be useful for querying using generalizations.
Unfortunately, we do not know ex ante whether the original

hierarchy is equivalent to subClassOf in a given target context
(even if it was equivalent for the broad interpretation of the
categories).

GenTax creates two ontology classes per each category: One for
the broad category in the context of the original hierarchy and a
related second class for the narrower meaning of the category in a
particular context. The second class is a subClass of the category
class (this holds in most cases but is evaluated later anyway).
Second, GenTax inserts subClassOf relations between all category
classes that are subcategories in the original hierarchical
categorization scheme. This allows for exploiting the original
hierarchy for queries and other operations on the data. Also, each
generic class becomes a subclass of its respective category class.

The semantics of the generic classes is determined by choosing a
top-level class from the Proton ontology, and turning each generic
class into a subclass thereof. Formally, the generic classes are
defined by the intersection of the category class and a so-called
"Master Concept" to be chosen by a human. The Master Concept
is the intended super-concept of all generic classes, in our case a
Proton class. For example, when deriving an ontology of products
and services the master concept would be e.g. "An actual product
or service". Implicitly, there exists also such a Master Concept for
the category classes. By default, its semantics is approximately
"Anything that can in any relevant context be classified under the
respective label". We use protont:Object by default.
However, one may want to narrow down this one, too.

In order to make sure that the resulting subsumption hierarchy is
correct, one should check the appropriateness of the subClassOf
relations between the resulting classes. As said, GenTax suggests
using representative random samples for that task.

2. DEMO
In this section, we provide a step-by-step example of converting a
SKOS file to an OWL or RDF-S ontology using SKOS2OWL.
Step 1: Select the SKOS source file: One can either upload a
local file or point SKOS2OWL to a file that is available on the
Web. Note that we kindly ask for permission to store and analyze
uploaded files in order to improve SKOS2OWL continuously.

Step 2: Loading and Parsing: As a next step, SKOS2OWL loads
and parses the file and shows some statistics.

Step 3: User Input: Now, the user has to select a base URI for
the ontology to be generated. By default, SKOS2OWL suggests
one in its own namespace. However, since we do not host the
resulting ontology for IPR reasons, one should rather use a URI in
another domain name space, otherwise the URIs will not be
dereferencable. This decision can be changed later by simply
editing the ontology file.

Then, an appropriate label and description (comment) of the target
ontology must be specified. These will be included in the
ontology header. As a last step, one can specify name and e-mail
address. Both will also be included in the ontology header.

Step 4: Modeling Choices: In the next step, one has to make
certain important modeling choices. First, one must decide
whether the ontology should be in either OWL or RDF-S. This
mainly affects whether the ontology classes will be RDF-S classes
or OWL classes. If one wants to use an OWL DL reasoner, OWL
is the better choice. Second, one must describe the context of the
original hierarchy - what does it mean to be an object in a

category in all of the contexts of usage of the original hierarchy.
We recommend using protont:Object with the default text.

Third, one has to select the intended Master Concept from top-
level Proton classes. Usually, one will have a clear understanding
of what it means to be an instance of the classes in the resulting
ontologies. For example, when reusing a classification of
electronic equipment, you may want to derive either an ontology
of actual pieces of electronic equipment or, alternatively, an
ontology of media resources related to different types of
electronic equipment. The Master Concept specifies the parent
class of all derived ontology classes.

Examples for master concepts are e.g. “Media Resource:
Everything that is a media resource”, “Product: Everything that is
an actual product”, or “Employee: A staff member”.

The master concept chosen is used for narrowing down the
meaning of the input labels. For example, the label "TV Set" from
an input categorization schema, may be narrowed down to “TV
Set [Media Resource]: A Media resource related to TV sets”, “TV
Set [Product]: An actual TV set”, or “TV Set [Employee]: A staff
member with expertise in TV sets”.

For more details on Master Concepts, see also the GenTax section
on the Web site.

Step 5: Diagnosis: In this step, we check whether the conversion
as configured will produce a consistent ontology. For that, we
check for three potential causes of problems.

Local labels: Often, the intended meaning of a concept in a SKOS
vocabulary is not what the pure label stands for, but instead what
this label means as a child node of its super-ordinate nodes.

Example: The concept "2006" in a hierarchy of concepts of the
form “Pictures <--- Italy <--- 2006” may mean all pictures that
were taken in Italy in 2006, instead of everything that can be
subsumed under the label "2006".
A simple cure to this problem is to add the labels of all superior
concepts to the name of the concepts, e.g. “Pictures <---
Pictures.Italy <--- Pictures.Italy.2006”. The default is no.
Is the original hierarchy a valid subsumption hierarchy in the
context of the original usage? Before we can reuse the original
hierarchy in SKOS as a subsumption hierarchy of the generated
ontology, we must make sure that this hierarchy is actually
equivalent to rdfs:subClassOf, since the "broader than / narrower
than" relationship in SKOS vocabularies is often used for less
precise semantic relationships between concepts.

Example: In a SKOS concept hierarchy, "ice cubes" may be a
child node to "beverages", because it is somehow related to
beverages. If we interpret the concepts in a broad sense of
"anything than can in any reasonable context be classified under
this label", it holds that an instance of "ice cubes" is also an
instance of "beverage".
If unsure, you can assume that this is the case. The default is yes.

Is the original hierarchy also a valid subsumption hierarchy in the
target context? In some lucky cases, we can also reuse the original
hierarchy in SKOS as a subsumption hierarchy between the more
specific concepts in the target context. In particular for SKOS
vocabularies that follow good conceptual modeling practices, this
may hold. However, usually we cannot safely assume that the
original "narrower than/broader than" relationships are also
always valid rdfs:subClassOf relations for the more specific target

concepts. Keep in mind that this decision depends on the choice of
the Master Concept in step 3.

Example: In a SKOS concept hierarchy, "ice cubes" may be a
child node to "beverages", because it is somehow related to
beverages, but it does not hold that an instance of "ice cubes" is
also an instance of "beverage" if the Master Concept is "Actual
Product or Service", whereas it may hold if the Master Concept
was "An invoice over goods of the respective type", since in most
businesses, expenses related to ice cubes are also expenses related
to beverages. The default is no.

Online Checks: For the three modeling choices in this step,
SKOS2OWL can present to the user a representative random
sample from the ontology to be created. The user will have to
judge whether the selected modeling decision is appropriate a few
times. If the choice is correct for all of the presented samples, then
we can assume it is also appropriate for the overall ontology. In
the first step, one has to choose the sample size, which determine
the confidence interval. The more leaves one looks at, the more
confident one can be that the resulting ontology is consistent.
Then, the tool shows you all super-concepts of the randomly
chosen leave and asks to check whether the modeling is correct. If
the modeling is correct, the tool takes the user to the next element

in the sample. If not, the tool will stop and suggest the default
modeling choice. If you the user does not report any problem in
the presented samples, then the tool assumes the choice is correct.

Step 6: Generating Ontology: On the last screen, SKOS2OWL
shows the first 100 lines of the resulting ontology and provides a
link to the full ontology. The user can either download the
RDF/XML file or a compressed version as a ZIP file by clicking
on the symbol right to the filename.
Acknowledgments: Jos de Bruijn co-authored the original paper on the GenTax
algorithm. The work on the algorithm and the SKOS2OWL tool has been supported
by the European Commission under the projects SUPER (FP6-026850) and
MUSING (FP6-027097), by the Austrian BMVIT/FFG under the FIT-IT project
myOntology (grant no. 812515/9284), and by a Young Researcher’s Grant
(Nachwuchsförderung 2005-2006) from the Leopold-Franzens-Universität
Innsbruck.

REFERENCES
[1] Hepp, M., Bruijn, J.d.: GenTax: A Generic Methodology for
Deriving OWL and RDF-S Ontologies from Hierarchical
Classifications, Thesauri, and Inconsistent Taxonomies. In:
Fraconi, E., Kifer, M., May, W. (eds.): 4th European Semantic
Web Conference (ESWC 2007), LNCS 4519. Springer,
Innsbruck, Austria (2007), pp. 129-144.

