
 Products and Services Ontologies: 1

Products and Services Ontologies: A

Methodology for Deriving OWL Ontologies

from Industrial Categorization Standards

Martin Hepp

Digital Enterprise Research Institute (DERI), Innsbruck, Austria
Florida Gulf Coast University, Fort Myers, FL, USA

mhepp@computer.org

http://www.heppnetz.de

Citation:

Martin Hepp: Products and Services Ontologies: A Methodology for Deriving OWL Ontologies from Industrial

Categorization Standards, Int'l Journal on Semantic Web & Information Systems (IJSWIS),

Vol. 2, No. 1, pp. 72-99, January-March 2006.

Official version available at

http://www.idea-group.com/articles/details.asp?ID=5577

 Products and Services Ontologies: 2

Abstract

In order to use Semantic Web technologies for the automation of E-Business tasks, like product
search, content integration, or spend analysis, we need domain ontologies for products and
services. The manual creation of such ontologies is problematic due to (1) the high degree of
specificity, resulting in a very large number of needed concepts, and (2) the need for timely
ontology maintenance due to the high conceptual dynamics caused by innovation in the products
and services domain; and due to cost, since building such ontologies from scratch requires
significant resources. On the other hand, industrial products and services categorization
standards, like UNSPSC1, eCl@ss2, eOTD3, or the RosettaNet Technical Dictionary4 reflect
some degree of community consensus and contain, readily available, a wealth of concept
definitions plus a hierarchy. They can thus be valuable input for creating domain ontologies.
However, the transformation of existing taxonomies into useful ontologies is not as
straightforward as it appears, mainly because simply taking the hierarchy of concepts, which was
originally developed for some external purpose other than ontology engineering, as the
subsumption hierarchy can yield useless ontologies. In this paper, we (1) argue that for the
products and services domain, deriving ontologies from industrial taxonomies is more feasible
than manual ontology engineering due to the large number of concepts and the high conceptual
dynamics, (2) show that the interpretation and representation of the original semantics of the
input standard, especially the taxonomic relationship, is an important modeling decision that
determines the usefulness of the resulting ontology, (3) illustrate the problem by analyzing
DAML+OIL, OWL, and RDF-S ontologies derived from UNSPSC and eCl@ss, (4) present a
comprehensive methodology for creating products and services ontologies in OWL based on the
reuse of existing standards like eCl@ss and UNSPSC, and (5) demonstrate this approach by
transforming eCl@ss 5.1 into a practically useful products and services ontology.

Keywords: Ontology engineering, E-Commerce, E-Business, E-Procurement, Business
Ontologies, Products and Services, Taxonomies, Reuse, OWL, UNSPSC, eCl@ss, eOTD,
RNTD, RosettaNet

1 http://www.unspsc.org/

2 http://www.eclass-online.com/

3 http://registry.eccma.org/eotd/

4 http://www.rosettanet.org/

 Products and Services Ontologies: 3

1 Introduction

Products and services categorization standards (PSCS), like the UNSPSC, eCl@ss, eOTD, or the

RosettaNet Technical Dictionary (RNTD) form a valuable set of concepts from the products and

services domain and reflect some degree of consensus. They are thus a promising foundation for

the creation of product ontologies for the use in the Semantic Web, but are not by themselves

fully usable ontologies.

There already exist examples of products and services ontologies derived from PSCS, e.g. the

RDF-S versions of UNSPSC by Klein (Klein, 2002), and the DAML+OIL versions of UNSPSC

by McGuinness (McGuinness, 2001) and by Klein (Klein, 2002). However, those ontologies do

not properly reflect the specific semantics of the underlying standards. There also exists an early

prototype of a RDF representation of eCl@ss 4.1 created by (Bizer & Wolk, 2003), which is

based on an OWL ontology for representing taxonomies that itself is OWL Full, because it

applies object properties to classes. All three ontologies are one-time captures of the reused

standards, while the standards themselves have undergone significant change in the meantime

(Hepp, Leukel, & Schmitz, 2005a, 2005b). These shortcomings in combination limit the

usefulness of available ontologies.

Ontology engineering has been the subject of research for a long time, and multiple

methodologies for the creation of ontologies have been proposed. However, the script-based (i.e.

automated) reuse of concepts from hierarchically ordered standards, which were not created with

the rigor of knowledge representation in mind, creates different requirements and demands novel

approaches, mainly because we cannot partition the concept space into concepts at our own will.

In other words, we must automatically capture as much semantics as possible out of the existing

 Products and Services Ontologies: 4

standards and have only limited control over the actual definition of the concepts. In general, we

have to take the concepts as they are, because the size of those standards (between 20,000 and

almost 60,000 classes and between 3,000 and 20,000 properties) renders manual steps in the

process of importing the concepts unfeasible. On the other hand, we have to carefully analyze the

constraints and dependencies resulting from the implicit assumptions of the standards creators.

Additionally, the intension of the reused concepts will often be influenced by our interpretation

of the original standard. When transforming an informal categorization scheme into a formal

ontology using a standard ontology language, we often narrow down the semantics, which

includes some degree of freedom and thus several modelling decisions. Sometimes we might

even want to have controlled changes in meaning between the original standard and the resulting

ontology in order to create more useful ontologies. This, however, must be done with great care

and we then must make respective decisions transparent to the ontology user.

Related Work

Related work to this paper can be classified into the following main groups:

Ontology engineering methodologies, implicitly or explicitly focusing on the manual creation of

new ontologies based on knowledge engineering principles. A comprehensive discussion of all

approaches in this field is beyond the scope of this paper; for an overview, see e.g. (Fernández-

López & Gómez-Pérez, 2002) and (de Bruijn, 2003).

Analysis of the meaning of taxonomic relationships, especially the fundamental work of

(Brachman, 1983). This yielded the insight that there are multiple types of taxonomic

relationships, which should be represented distinctively.

Contributions regarding Electronic Commerce ontologies mainly from the perspective of catalog

data management and ontology mapping. (Fensel, McGuinness et al., 2001) discuss the

 Products and Services Ontologies: 5

advantages of ontologies for the integration of heterogeneous and distributed information in the

E-Commerce field. (Schulten et al., 2001) and (Fensel, Ding et al., 2001) focus on the problem

of product data integration in B2B relationships. (Ng, Yan, & Lim, 2000) introduce the important

distinction between content standardization versus content integration as two approaches for

overcoming information heterogeneity. (Fairchild & de Vuyst, 2002) detail the benefits of

standardized products and services coding from a business perspective. (Obrst, Wray, & Liu,

2001) discuss the challenges associated with the creation of ontologies for the product and

service knowledge space, stressing the task of mapping among ontologies. (Kim, Kim, & Lee,

2002) propose catalog data integration based on the controlled merging of category hierarchies.

(Kim, Lee, Chun, & Lee, 2004) discuss the problematic aspects of a naïve view on product

classification as one “ideal” way of ordering, and introduce the important notion of any

classification being a purpose-specific order and thus not universally useable.

Prototypes of products and services ontologies in standard ontology languages derived from

UNSPSC. To our knowledge, there are currently two examples of UNSPSC transformations into

ontology representation languages: The DAML+OIL and RDF-S variants created by Klein

(Klein, 2002) and the DAML+OIL variant from the Knowledge Systems Laboratory at Stanford,

see (McGuinness, 2001). Also, there exists an early prototype of a RDF representation of eCl@ss

4.1 created by Bizer and Wolk (Bizer & Wolk, 2003). A slightly different approach is presented

in (Klein, 2001): Instead of transforming UNSPSC into an ontology, he creates a small ontology

of properties that supports the usage of UNSPSC codes in annotations as literal values.

Methodologies for and experiences with the reuse of consensus in existing standards for the

creation of ontologies. This is the most relevant field of work for this paper. Rector et al. (2001)

discuss the transformation of tangled hierarchies, as e.g. such derived from ambiguous “broader

 Products and Services Ontologies: 6

than / narrower than” taxonomies in library science, into formal ontologies. Recently,

(Giunchiglia, Marchese, & Zaihrayeu, 2005) introduced the notion of Formal Classification and

proposed an approach of how to disambiguate the local labels of a given classification systems

into logical formulae. (Paslaru Bontas, 2005) points to the importance of understanding the

(often implicit) context, especially information about “scope, history, purpose, authors, or best

practices of [its] usage” when reusing conceptualizations of a domain. Kashyap et al. (2003)

describe the experiences gained while transforming the constructs of an existing Semantic

Network in the medical domain into an OWL ontology. (Wielinga, Schreiber, & Sandberg, 2001)

show the reuse and semantic enrichment of an existing taxonomy and demonstrate this for the

Art and Architecture Thesaurus (AAT). (Wielinga, Wielemaker, Schreiber, & van Assem, 2004)

and (van Assem, Menken, Schreiber, Wielemaker, & Wielinga, 2004) are consequent works of

this stream of research. An important characteristic of (Wielinga et al., 2004) and (van Assem et

al., 2004) is that they leave the limits of OWL DL in order to capture semantics contained in the

original taxonomy, namely to be able to treat classes as instances and vice versa. An important

distinction between the proposal of (Wielinga et al., 2004) and the work presented in our paper is

that they treat the taxonomic relationship in the input taxonomy as a special form (i.e.

rdfs:subPropertyOf) of rdfs:subClassOf), whereas in our approach, the original taxonomic

relationship is regarded as a weaker, more general, and semantically less specific relationship. In

other words, we regard rdfs:subClassOf as a specific form of a general taxonomic relationship,

i.e. a rdfs:subPropertyOf of the more general idea of a taxonomic relationship. This approach is

explained below in greater detail.

 Products and Services Ontologies: 7

Our Contribution

In this paper, we (1) argue that for the products and services domain, deriving ontologies from

industrial taxonomies is more feasible than manual ontology engineering due to the large number

of concepts and the high conceptual dynamics, (2) show that existing DAML+OIL and RDF-S

domain ontologies derived from products and services standards, namely UNSPSC, are based on

incorrect assumptions about the meaning of the taxonomic relationship in those standards,

limiting the practical use of the resulting ontologies; (3) detail how the interpretation and

representation of the taxonomic relationship is an important modelling decision that determines

the usefulness of the resulting ontology, (4) present a comprehensive methodology for creating

products and services ontologies in OWL Lite based on the reuse of existing standards like

eCl@ss and UNSPSC, (5) develop a pragmatic versioning mechanism that is compatible with

existing OWL Lite constructs, (6) show how the valuable property recommendations for classes

and the value recommendations for properties found in eCl@ss and RNTD can be represented

without violating the limits of OWL Lite and the Open World Assumption (OWA). Finally, we

demonstrate the application of our novel approach to eCl@ss 5.1 and provide a comprehensive

and practically useful ontology for the products and services domain. To our knowledge, the

resulting ontology is the first real-world domain ontology for products and services.

The structure of the paper is as follows. Section 2 summarizes the characteristics and

components of prominent products and services categorization standards (PSCS). Section 3

elaborates on the representational challenges and presents a comprehensive proposal of

transforming products and services categorization schemes into OWL ontologies. Section 4

evaluates and illustrates the proposal by applying it to the categorization standard eCl@ss.

 Products and Services Ontologies: 8

Section 5 discusses the benefits, limitations, and implications of our approach. Section 6

summarizes the results.

2 Characteristics of Products and Services Categorization Standards

There are countless approaches for the classification of goods, ranging from rather coarse

taxonomies, created for customs purposes and statistics of economic activities, like the North

American Industry Classification System (NAICS) and its predecessor SIC (see (U.S. Census

Bureau, 2004)), to expressive descriptive languages for products and services, like eCl@ss,

eOTD, or the RosettaNet Technical Dictionary. The UNSPSC, widely cited as an example of a

product ontology, is in the middle between those two extremes, providing an industry-neutral

taxonomy of products and services categories, but no standardized properties for the detailed

description of products.

It is out of the scope of this paper to list and compare all available standards in this area, but one

can say that UNSPSC, eCl@ss, and eOTD are currently the most important horizontal standards

(i.e. covering a broad range of industries), and RNTD should be included in the analysis because

of its high degree of detail, albeit limited to a narrow segment of products.

Intended Usage

The basic challenge when deriving ontologies from existing taxonomies is to understand the

implicit assumptions of its creators and its user community, and to then represent as much as

possible of the original semantics using the allowed constructs of the respective ontology

language. The hierarchies of both UNSPSC and eCl@ss were created on the basis of practical

aspects of procurement, treating those commodities that “somehow” belong to a specific

category, as descendents of this closest category. This makes “ice” a subcategory to “non-

alcoholic beverages” in UNSPSC and “docking stations” a subcategory of “computers” in

 Products and Services Ontologies: 9

eCl@ss. This is fine as long as the taxonomy is used for analytical purposes (e.g. spend analysis;

the aggregation of spendings based on a corporate cost accounting scheme) or grouping products

in electronic catalogs that will be used by humans, and this is exactly the typical form of

intended usage. However, if we reuse the concepts from UNSPSC or eCl@ss for building an

ontology, we have to carefully analyze the implications resulting from the originally intended

purpose of those standards. As a consequence, the transformation of such taxonomies into useful

ontologies is not as straightforward as it appears, because simply taking the hierarchy of

concepts, which was originally developed for some external purpose other than ontology

engineering, as the subsumption hierarchy using e.g. rdfs:subClassOf can yield useless

ontologies. Often, the original meaning of the taxonomic relationship is “A is in some context a

more specific category of B” rather than a strict subClassOf relationship with the typical

semantics “For all A being a descendent of B, every instance of A shall also be an instance of

B”.

Components

All of those standards reflect a varying combination of the following components, which can be

reused for a derived ontology. It is crucial to observe that most standards were not created with

the rigor of ontology engineering, or knowledge representation in general, in mind, but for very

specific purposes, leading to several implicit assumptions and inconsistencies. Failure to

understand the context of the underlying standard will yield inconsistent and almost useless

ontologies.

Product Classes

All PSCS are based on a set of product categories that aim at grouping similar products.

However, this grouping is often influenced by the purpose of the PSCS. For example, the

 Products and Services Ontologies: 10

categories can aggregate products by the nature of the products or by their intended usage. This

is most obvious when it comes to classifying chemicals: The same substance can be used for

multiple purposes, and classification systems can be based on classes for the chemical

substances, categories for the various usages, or a combination of both. This can create

confusion, as there is an N:M correspondence between the nature of a product and product

usages.

The intensions of the product categories are usually captured in a rather informal way, ranging

from just very short class names to quite precise natural language definitions, sometimes

available in multiple languages.

Hierarchy of Classes

Most PSCS arrange the classes in hierarchical order. It is crucial to understand that this hierarchy

is directly connected to the intended usage of the PSCS. For example, eCl@ss was designed with

the idea of grouping products from the perspective of a buying organization or a purchasing

manager. So it regards products as similar that are (1) bought from the same range of suppliers,

(2) needed by the same consumers inside the organization, (3) billed using the same cost

accounting categories, or any combination of those.

TV
Maintenance

Radio and TV

TV Set

Color TVb/w TV

Radio

Portable
Radio

Radio
Antenna

Figure 1: Example of a products and services taxonomy

 Products and Services Ontologies: 11

A typical consequence of this is that related categories (e.g. service or maintenance) are often

descendents of the general good category. The category “TV Set Maintenance” will thus be

regularly a descendent of “TV Sets”, and “Oil for Sewing Machines” will be a descendent of

“Sewing Machinery”. As a summary, the semantics of this relationship is generally not more

specific than “Class A is some special kind of Class B”. Figure 1 gives an example of a

taxonomy for products and services.

It is also important to note that, though all PSCS internally have unique identifiers for the

classes, the visible identifier for a class is often just the position in the hierarchy (e.g. 1-3-0-0 for

machinery and 1-3-1-0 for agricultural machinery). This is in general a bad practice, as it makes

it hard to rearrange the hierarchy without destroying existing references to categories. Thus, it

makes much more sense to use the true identifier of the classes as the concept identifier, for it

also allows the use of multiple hierarchies for different purposes (e.g. one for cost accounting

and one for purchasing management).

Dictionary of Properties

More sophisticated PSCS include a dictionary of standardized properties that can be used to

describe product instances (i.e. an actual product that can be sold and bought) or product models

(i.e. the brand of a commodity) in more detail and thus allow parametric search. Parametric

search means querying the product space using restrictions on the properties of the product (e.g.

“all TV sets that weigh less than 5 kg and have a screen size greater than 10 inches”). Usually,

those property dictionaries contain a quite rich definition of the contained properties, including

not only sophisticated data typing, but also references to international standards for the unit of

measurement. From the perspective of ontology engineering, most of the properties are data type

 Products and Services Ontologies: 12

properties, though there are also recommended sets of enumerated values for a small part of the

properties.

Enumerated Property Values

For properties where an arbitrary string is not sufficient to capture the value in a semantically

unambiguous way, most PSCS maintain a list of supported values in a separate collection. For

example, eCl@ss contains the property “Design of door” (ID BAA106001 in version 5.1), with

the lexical space set to an arbitrary string of up to 32 characters. The set of supported values

contains two entries that are recommended for the use with this property, “Folding doors” (ID

AAA376001) and “Sliding doors” (ID AAA377001). The mapping between recommended

values and such properties is usually kept in a separate relation.

Class-Property Relation

Most PSCS with a dictionary of properties include a mapping between classes and recommended

properties, i.e. property sets per each class, sometimes referred to as “attribute lists”. However,

the semantics of this assignment varies between different standards. It can range from very loose

recommendations (as in eOTD) to a rather strict definition of those properties necessary and

sufficient to completely describe an product model or product instance of the respective class (as

in eCl@ss). The creation and maintenance of such property assignments is a tremendous task,

and none of the existing horizontal PSCS has specific property lists for more than 50 % of their

categories (see (Hepp et al., 2005b) for a comprehensive analysis).

Keywords

In order to support a human user in finding the proper concepts, most PSCS contain keywords

for classes, properties, and values. Those keywords are often no true synonyms and must thus be

used with care. Quite frequently, more specific words (e.g. “ink-jet paper”) point to the more

 Products and Services Ontologies: 13

generic category that fits best (e.g. “office paper”) and the user must keep in mind that the found

concept is less specific than the initial keyword.

Size

UNSPSC, a standard hierarchs for products and services and often referred to as a business

ontology, contains 20,789 categories (in version 7,0901), and eCl@ss, a similar but more

expressive standard, contains 25,658 categories plus 5,525 precisely defined object and datatype

properties (in version 5.1). The amount of concepts for services ranges from 21 % in UNSPSC

(4313 categories) to 4 % in eCl@ss (1064 categories), which clearly shows that the scope of both

standards is not limited to tangible products. For a quantitative analysis of the content and

domain coverage of products and services hierarchies, see (Hepp et al., 2005a) and (Hepp et al.,

2005b).

Versioning Dynamics

Due to the continuous innovation in the product and services domain, all PSCS are a work in

progress with multiple releases per year. We know from practitioners that they would prefer

stable categorization standards and long release intervals; however it is important to note that

more change in a standard is usually better, since it reflects active processing of change requests

caused by innovation dynamics in the various industries.

 Products and Services Ontologies: 14

Table 1: Amount of change in eCl@ss, eOTD, RNTD, and UNSPSC (taken from (Hepp et al.,

2005a)).

In a recent analysis we found out that, on average, eCl@ss grows by as much as 280 and

UNSPSC by 230 new classes per 30 days, see (Hepp, 2004), (Hepp et al., 2005a) and (Hepp et

al., 2005b). Table 1 shows the amount of change dynamics in eCl@ss, eOTD, RNTD, and

UNSPSC in detail. The high amount of change dynamics in e.g. eCl@ss and UNSPSC is an

indicator for active user communities and maintenance, while the low amount in eOTD and

RNTD shows that those are rather dead collections than actively maintained standards.

As a consequence, transforming a PSCS into an ontology is no one time task, but a recurring

activity, and the time available for this tasks is limited.

Release Previous
release

New classes
per 30 days Mean

Modified
classes per

30 days
Mean

5.0 4.1 865.0 157.4
5.0SP1 5.0 47.8 10.2
5.1beta 5.0SP1 131.6 4918.0
5.1de 5.1beta 74.1 0.0

10-01-2003 01-17-2003 6.1 0.0
11-01-2003 10-01-2003 4.8 0.0
03-01-2004 11-01-2003 18.3 0.0
06-01-2004 03-01-2004 1.6 0.0
08-01-2004 06-01-2004 0.0 0.0

2.0 1.4 0.7 6.4
3.0 2.0 2.4 1.0
3.1 3.0 0.0 0.1
3.2 3.1 0.0 0.0
4.0 3.2 3.4 0.0

6,0315 5,1001 907.8 135.6
6,0501 6,0315 304.5 53.0
6,0801 6,0501 97.5 15.0
6,1101 6,0801 69.1 50.2
7,0401 6,1101 13.8 29.4
7,0901 7,0401 10.8 2.0

eCl@ss

eOTD

UNSPSC

RNTD

279.6

6.2

1.3

233.9

1271.4

0.0

1.5

47.5

 Products and Services Ontologies: 15

3 Challenges of Deriving OWL Ontologies from Products and Services Categorization

Standards

The basic challenge when deriving ontologies from PSCS is to represent as much as possible of

the original, informal semantics from the taxonomy using the allowed constructs of the

respective ontology language. In this section, we explain that previous attempts do not properly

capture the semantics of the reused PSCS, especially with regard to the taxonomic relationship.

As a consequence, we propose a novel methodology and show in detail how the core components

of PSCS, as introduced in section 2, should be represented in OWL Lite.

Product Classes and Hierarchy

When taking the categories found in an existing taxonomy as the basis for the creation of an

ontology, we face a fundamental problem: Unless there is a formal definition of the semantics of

the taxonomic relationship, the intensions of the category concepts (e.g. the product classes) are

tangled with the interpretation of the taxonomic relationship. In other words: If we lack a formal

definition of either the hierarchical relationships or the category concepts, then how we

understand the taxonomic relationship determines the shape of the category concepts and vice

versa. Our choice of the interpretation of the taxonomic relationship affects the intension of the

category concepts, and a chosen definition of the intension of the category concepts is

compatible with only a specific interpretation of the taxonomic relationship.

As a consequence, we have some degree of choice over the intension of the ontology classes

derived from the categories in the source taxonomy by our choice of the interpretation of the

taxonomic relationship.

Two examples might illustrate this problem: The hierarchies of both UNSPSC and eCl@ss were

created on the basis of practical aspects of procurement, treating those commodities that

 Products and Services Ontologies: 16

“somehow” belong to a specific category as descendents of this closest category. This makes, as

said, “ice” a subcategory of “non-alcoholic beverages” in UNSPSC and “docking stations” a

subcategory of “computers” in eCl@ss.

Now, we can simply read the taxonomic relationship as a strict “rdfs:subClassOf” relationship

(i.e. each instance of “ice” is also an instance of “non-alcoholic beverages” and each instance of

“docking station” is also an instance of “computers”). Then, however, the intension of the class

“computers” is no longer any computer, but the concept “computer” solely from the perspective

of cost accounting or spend analysis, where an incoming invoice for a docking station can be

treated as an incoming invoice for a computer. Similarly will “non-alcoholic beverages” no

longer represent all non-alcoholic beverages, but the union of non-alcoholic beverages and

related commodities.

The disadvantages of this interpretation of the taxonomic relationship as being equivalent to

rdfs:subClassOf is obvious: We can no longer use the resulting classes for fully automated

buying processes, because a search for all instances of “computers” will also return docking

stations, and ordering the cheapest available instance of non-alcoholic beverages will very likely

return just ice cubes.

Given now the fact that our interpretation of the taxonomic relationship in the source taxonomy

determines the intension of the classes, we have to actively choose the most useful shape of the

product classes and then derive the required interpretation for the taxonomic relationship.

Basically, each source taxonomy contains two concepts for each category node (see Figure 2):

First the generic concept of the respective product or service category (e.g. “home appliances”,

marked as (1) in Figure 2) and second the related taxonomic concept (e.g. “home appliances and

related goods”, marked as (2) in Figure 2).

 Products and Services Ontologies: 17

Generic concept
(Example: “Home appliances”)

Taxonomic Concept
(Example: “Home appliances

and related goods”)

1 2

1 2

Figure 2: Relationship between generic concepts and taxonomy nodes

Depending on the implicit assumptions of the creators of the taxonomy, the relationship between

the two concepts can deviate from the one shown in Figure 2, though this is the most frequently

found one.

Now, even though the taxonomic relationship should not be interpreted as rdfs:subClassOf, we

still want to capture the relationship as such, because there are applications like cost accounting

where it is very useful. Thus, we have to find a way to represent generic categories for general

use, while still preserving the hierarchical order for analytical purposes and similar applications.

The most straightforward representation of UNSPSC and eCl@ss would be to create one

ontology class for each category in the source standard, reflecting the general concept, and to

capture the original hierarchy using a specific, transitive relationship “taxonomySubClassOf”

between those classes. This approach is shown in Figure 3. This would allow having classes for

the generally usable product categories while still being able to include the original hierarchy for

queries (e.g. for finding all home appliances and all subcategories of home appliances in one

query). Unfortunately, this is not possible in OWL Lite and DL, since relationships that link

classes to classes can only be Annotation Properties in OWL, which cannot be made transitive.

 Products and Services Ontologies: 18

Other ontology languages, like the WSML family of languages (de Bruijn et al., 2005), would

support this, but are currently less widely in use.

ex:taxonomySubClassOf

TV Maintenance

TV Set

Radio and TV

ex:taxonomySubClassOf

FORALL
A ex:taxonomySubClassOf B AND
B ex:taxonomySubClassOf C

A ex:taxonomySubClassOf C

Figure 3: Representation using a new, transitive relationship „taxonomySubClassOf“

There are at least the following three known approaches of transforming a given taxonomy into

an OWL Lite ontology, of which only the last two meet the stated requirements.

1. Create one class for each taxonomy category and assume that the meaning of the

taxonomic relationship is equivalent to rdfs:subClassOf (Figure 4).

2. Create one class for each taxonomy category and represent the taxonomic relationship

using an Annotation Property taxonomySubClassOf (Figure 5).

3. Treat the category concepts as instances instead of classes and connect them using a

transitive Object Property taxonomySubClassOf (same as Figure 3 with the categories

being instances instead of classes).

 Products and Services Ontologies: 19

rdfs:SubClassOf

TV Maintenance

TV Set

Radio and TV

rdfs:SubClassOf

Figure 4: Option 1 in OWL: Understanding the concepts in the narrowest of all senses

Approach 1 is chosen by both available transformations of UNSPSC into products and services

ontologies (it should be said that both ontologies base on different releases of UNSPSC and do

thus not contain the exact same set of concepts). For example, the RDF Schema representation of

UNSPSC created by Klein (Klein, 2002) contains statements of the following kind:

<rdfs:Class rdf:ID="Ice">
 <rdf:type rdf:resource="http://ontoview.org/schema/unspsc/1#Commodity"/>
 <rdfs:subClassOf rdf:resource="#Non_alcoholic_beverages"/>
 <unspsc:egci>014067</unspsc:egci>
 <unspsc:code>50.20.23.02</unspsc:code>
</rdfs:Class>

The DAML representation of UNSPSC created by the Knowledge Systems Laboratory at

Stanford University (see (McGuinness, 2001)) uses the same structure:

<rdfs:Class rdf:ID="Docking-stations">
 <rdfs:subClassOf rdf:resource="#Computers"/>
 <unspsc-code>43171802</unspsc-code>
</rdfs:Class>

While the underlying approach is not necessarily incorrect, it does not yield a products and

services ontology, but a set of cost accounting and purchasing management categories. Quite

clearly, we want to make the resulting products and services ontology be useful for many

different application areas, including the search for products and services, and not limit the usage

to spend analysis.

 Products and Services Ontologies: 20

taxonomySubClassOf

TV Maintenance

TV Set

Radio and TV

taxonomySubClassOf

<owl:AnnotationProperty rdf:about=“ex:taxonomySubClassOf"/>

Figure 5: Alternative 2 in OWL: Using the non-transitive Annotation Property

taxonomySubClassOf

The second approach is shown in Figure 5. This representation seems to be the most

straightforward alternative, since the specific meaning of the taxonomic relationships is captured

using a specific property and the classes can represent generic product concepts. The problem

with this approach is that, in OWL Lite and OWL DL, a property that connects classes with

classes can only be an Annotation Property. Thus, it cannot be made a transitive property, and an

OWL Lite or OWL DL reasoner will only see explicit statements. In other words, if class A is a

taxonomySubClassOf class B and class B is a taxonomySubClassOf C, the reasoner will not

infer that class A is also a taxonomySubClassOf class C.

This limitation can be avoided by making the products and services concepts instances instead of

classes, as described in solution 3. Then, the property “taxonomySubClassOf” can be an Object

Property and can be made transitive (owl:TransitiveProperty). The downside of this approach is

that one absolutely needs OWL Lite or OWL DL reasoning support in order to process the

transitive nature of the property.

It might seem strange from a pure modeling perspective to impose both the limitations of OWL

Lite (e.g. classes cannot be instances) and the limited reasoning of RDF-S (no transitive

 Products and Services Ontologies: 21

properties other than rdfs:subClassOf and rdfs:subPropertyOf). However, this makes sense from

a practical perspective, for the following reasons:

1. It works with faster but incomplete implementations of OWL reasoners, especially the

use of an RDF-S reasoner on OWL ontologies (supported by some repositories), while

being upward compatible to future implementations. Especially, it allows for a merge

with other OWL Lite data without making the result of the merge leave the boundaries of

OWL Lite.

2. It is possible to create an RDF-S variant of the ontology using the same constructs with

only minimal changes. The low performance of current OWL implementations might

make this step back necessary. We have to keep in mind that the resulting ontologies are

rather big (tens of megabytes).

Thus we wanted to find a solution that does not require reasoning capabilities beyond

rdfs:subClassOf.

Since all known representation patterns do not really meet the requirements of creating fully-

fledged products and services ontologies based on UNSPSC and eCl@ss, we propose a novel

approach, which is based on the idea of representing a concept in the source taxonomy using two

concepts in the ontology; one generic concept and one taxonomy concept (see also (Hepp,

2005a) and (Hepp, 2005b)). The basic idea is as follows:

1. We create two separate concepts for (1) the generic product or service category and (2)

the respective taxonomy category.

2. We arrange the taxonomy concepts in a strict rdfs:subClassOf hierarchy, but not the

generic concepts. This allows for capturing the hierarchy of taxonomy concepts without

linking the generic concepts to incorrect superordinate classes.

 Products and Services Ontologies: 22

3. In order to ease annotation, we create one annotation class for each taxonomy node which

becomes an rdfs:subClassOf of both the respective generic and the respective taxonomy

concept. With this construct, a single rdf:type statement is sufficient to make a product an

instance of both the generic and the taxonomy concept.

TV Maintenance
(Generic) TV Maintenance

(Taxonomy)

TV Maintenance
(Annotation)

TV Set
(Taxonomy)

TV Set
(Generic)

TV Sets
(Annotation

1 2

1 2

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf rdfs:subClassOf

rdf:type

ex:myTVService

rdf:type

sony:TV-123

Figure 6: A novel approach: Separating the generic concept from the taxonomic concept

Figure 6 illustrates this approach. The concept numbering with (1) and (2) refers to the

numbering in Figure 2. The application of this approach for describing products is shown in

Figure 7: The TV maintenance service ex:tv-set-repair is an instance of the annotation class “TV

Set Maintenance”. This makes it also an instance of the generic product class “TV Set

Maintenance (Generic)” and the taxonomy concept “TV Set Maintenance (Taxonomy)”. The

second is a subclass of “TV Set (Taxonomy)”, but the first is not a subclass of “TV Set

(Generic)”. This yields exactly the distinction we want: When searching for a TV maintenance

service, we look for instances of the generic class, and when looking for all items that belong to

 Products and Services Ontologies: 23

the taxonomy category, we use the taxonomy concept. For example, a store manager might want

to find all products in the TV set segment. In this case, he or she also wants to find TV set

cabling and maintenance, so the query will be based on the taxonomy concept.

TV Maintenance
(Generic)

TV Maintenance
(Taxonomy)

TV Maintenance
(Annotation)

TV Set
(Taxonomy)

TV Set
(Generic)

TV Sets
(Annotation

1 2

1 2

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf rdfs:subClassOf

TV Maintenance
(Generic)

TV Maintenance
(Taxonomy)

TV Maintenance
(Annotation)

TV Set
(Taxonomy)

TV Set
(Generic)

TV Sets
(Annotation

1 2

1 2

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf rdfs:subClassOf

ex:tv-set-repair

rdf:type

rdf:type
rdf:type

rdf:type

Figure 7: Example of using the proposed approach for product description

TV Maintenance
(Generic)

TV Maintenance
(Taxonomy)

TV Maintenance
(Annotation)

TV Set
(Taxonomy)

TV Set
(Generic)

TV Sets
(Annotation

1 2

1 2

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf rdfs:subClassOf

TV Maintenance
(Generic)

TV Maintenance
(Taxonomy)

TV Maintenance
(Annotation)

TV Set
(Taxonomy)

TV Set
(Generic)

TV Sets
(Annotation

1 2

1 2

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf rdfs:subClassOf

ex:repairInvoice1234

ex:belongsToCategory

rdfs:subClassOfrdfs:subClassOf

Figure 8: Example of using the proposed approach for annotating incoming invoices for spend analysis

 Products and Services Ontologies: 24

The resulting ontology is not limited to describing product instances, but can also be used for

annotating any kind of other entities. For example, incoming invoices can be linked to the

respective classes with an annotation property “ex:belongsToCategory” (Figure 8). This allows

capturing the fact that a specific invoice is referring to the respective category, but is not an

instance. As every class in OWL is also an rdfs:subClassOf of itself and rdfs:subClassOf is

transitive, one can easily search for all resources belonging to a taxonomy category on any level

of the hierarchy (see Section 4 for the example of an RDQL query).

Product Properties and Property Data Typing

From an ontology engineering perspective, the set of properties in PSCS might seem rather

trivial, because most of them are simple data type properties. However, their contribution to

machine readable semantics in the Semantic Web is huge, for they provide standardized

representations for concepts as generic as “weight” or as specific as “pump capacity”. Some of

them can also be applied usefully when the class of a product is not known or no proper class

exists. For example, it might be helpful to represent the weight of a novel product even though

we do not yet have a proper class for this product.

The import of properties from PSCS into an OWL Lite ontology requires the following steps:

1. Determine whether it is a data type property or an object property, i.e. whether there are

enumerated data values for this property or not.

2. Map the data type of the property to one XSD data type supported by current reasoners.

3. Add the unit of measurement (e.g. “inches”), usually stored separately in the PSCS, to the

description of the property.

4. Create respective OWL properties for each property contained in the source PSCS.

5. Create instances of a new class “PropertyValue” for each enumerated data value.

 Products and Services Ontologies: 25

It is important to know that the data types used in the PSCS cannot be directly mapped to

standard XSD data types. eCl@ss, for example, uses over hundred different data type definitions

based on ISO 9735 and ISO 6093, which are far more specific than available standard XSD data

types. There are basically two options for this transformation:

1. One can use a rather coarse mapping from the specific ISO 9735 and ISO 6093 data types

to standard XSD data types, loosing constraints of the original definition (e.g. field

length, number of digits, …).

2. Alternatively, it seems possible to create specific XSD data types or use constraining

facets (see (W3C, 2001), section 4.3) to further constrain the standard XSD data types.

However, this is currently not supported by OWL, though there in ongoing work in this

direction (e.g. (W3C, 2005)).

Thus, and given the yet limited support of reasoning for data types in Semantic Web tools, the

first approach seems currently more appropriate. If possible, data types of the source PSCS

should be mapped to either xsd:integer, xsd:float, or xsd:string.

Class-specific Property Lists and Value Recommendations

As explained in Section 2, most PSCS recommend the usage of certain properties for specific

classes. In eCl@ss, this is a very strong component, as the set of recommended properties tries to

reflect industry-wide consensus on which properties are necessary and sufficient to describe a

product instance or model. Additionally, there is often a mapping between properties and

enumerated values.

Both relations are worth being represented in the target ontology but do not fit into the open

world assumption (OWA). It is not possible to restrict the usage of properties on certain classes

or to restrict the usage of value instances to certain object properties, since the domain and range

 Products and Services Ontologies: 26

constructs in OWL and RDF-S are used to infer class membership instead of constraining

allowed usage.

The most straightforward approach to deal with this problem is creating two annotation

properties “recommendedProperty” and “recommendedValue” and use those to capture the

respective relation. It is then up to the application developer to use this mapping to validate

instance data or to help the user finding suitable properties or values for a given annotation task.

Keywords

Keywords providing alternate search paths to classes, properties, or values can be easily captured

using the Dublin Core field “subject” as an annotation property dc:subject.

Persistent URIs as Ontology Component Identifiers

Real-world usage of a products and services ontology requires persistent identifiers for all

ontology components. This is achieved best by creating a persistent base URI according to the

principles outlined by (Berners-Lee, 1998) and omitting the file name of the actual ontology

serialization (e.g. no “eclass.owl” as part of the URI). The later eases having representations of

the same ontology in various ontology languages.

Persistent Base URI

A persistent URI should be located in the domain space of the standards body maintaining the

PSCS or the ontology. The following describes a generic scheme for such persistent URIs:

http://organization/ontologies/schema-identifier/version

organization

The domain name of the organization that manages the respective products and services

categorization standard, e.g. “www.eclass.de” or, if that is not feasible or misleading, that of the

organization maintaining the ontology variant.

 Products and Services Ontologies: 27

schema-identifier

A uniform short name for the respective products and services categorization standard, e.g.

“eclass”. This string must be unique within one organization, but in case a standard starts being

maintained by multiple competing organizations (as it happened to the UNSPSC in the past), two

organizations might use the same short name.

version

A unique identifier for the version of the underlying standard, preferably in the form yyyymmdd

(year-month-day) reflecting the release date of the version, e.g. 20040920 in the absence of a

unique version identifier.

As an example, the base URI for eCl@ss version 5.1 could be

http://www.eclass.de/ontologies/eclass/5.1

Concept Identifiers

The most reasonable approach for the individual concept identifiers is using the primary keys of

the original taxonomy components as fragment identifiers (rdf:ID). This is the only way that

assures fully automated transformations, because concept names and other fields of the

taxonomy cannot be assumed to be unique.

However, the primary keys are in some standards unique only for the same type of component.

In eCl@ss, for example, there is a small intersection of the primary key space between classes

and properties. Failure to handle this properly would create an inconsistent ontology.

We propose adding a prefix reflecting the respective taxonomy component before the original

primary key, e.g. “C_” for classes, “P_” for properties, and “V_” for values. For example, the

product category with the primary key “AKJ644002” in eCl@ss 5.1 receives the fragment

identifier “C_ AKJ644002”.

 Products and Services Ontologies: 28

As we create three OWL classes per each taxonomy class, we have to distinguish them. An

intuitive way is adding “-gen” to the identifier of the generic concept, “-tax” to the taxonomy

concept, and to use the original identifier for the annotation concept.

As an example, the eCl@ss 5.1 category AKJ644002 will be represented by the following three

OWL classes:

http://www.eclass.de/ontologies/eclass/5.1#C_AKJ644002
http://www.eclass.de/ontologies/eclass/5.1#C_AKJ644002-gen
http://www.eclass.de/ontologies/eclass/5.1#C_AKJ644002-tax

Retrievable Resources for Ontology Components

It can be argued whether the URI of each ontology component should be a retrievable resource

by itself or not. We regard having retrievable resources containing a natural language definition

of the concepts and probably images or other representations for each ontology component a

huge advantage, because this will make it a lot easier for an ontology user to grasp the intension

of the concept. As a consequence, it eases communication between the creator of the ontology

and ontology users, and will likely contribute to a more consistent usage of the ontology.

We see two options of providing this desirable functionality:

1. The respective organization provides retrievable resources for each URI; this would

mainly depend on a proper server configuration.

2. We include an annotation property rdfs:seeAlso for each ontology concept pointing to a

retrievable resource where available.

Versioning

As discussed, there is a high versioning dynamics in most PSCS. This makes setting up a proper

versioning mechanism a core task of ontology engineering. Without capturing the underlying

version of the respective PSCS, the resulting ontology is of very limited use.

 Products and Services Ontologies: 29

Our pragmatic solution to ontology versioning for products and services ontologies that are

derived from PSCS is as follows:

1. We treat each new release of the ontology as a new ontology with new concepts,

assuming no ex ante links between concepts in the old and new ontology.

2. For classes, properties, and values that are known to be equivalent (e.g. based on an

unchanged primary key and/or internal version ID), we provide a (huge) set of explicit

"owl:sameAs", “owl:equivalentProperty”, and “owl:equivalentClass” statements.

These explicit statements should be stored in separate ontology modules, so that they can be

imported only when needed.

There are two motivations for this approach:

1. One can find many “slight” changes in meaning between the same category in two PSCS

versions, especially caused by more precise (narrowing down the concept) or more

generic labels (broadening the concept).

2. The notion of identity (e.g. the desired conceptual specificity) might vary between users

of the same ontology or between fields of application. When it comes to aggregating

invoice items for spend analysis, precision is not so much an issue, whereas for price

comparison, we need a high specificity. With our approach, one can import different sets

of identity assertions for different purposes.

The underlying rationale is that it seems much more important to not falsely assume identity than

not to realize identity, for the later can be bridged later by mediation or established by explicit

statements. This problem can be understood a trade-off decision between type 1 (false rejection)

and type 2 (false acceptance) errors, or the calibration between precision and recall in

Information Retrieval.

 Products and Services Ontologies: 30

4 ecl@ssOWL: Transforming eCl@ss into an OWL Ontology

Based on the methodology described above, we have created an OWL Lite ontology of eCl@ss

5.1 and will do the same continuously for subsequent releases. We have chosen eCl@ss for the

demonstration of our approach because it offers both a broad coverage of various industries and

an impressive library of useful datatype and object properties. The same approach can be used

for UNSPSC and existing taxonomies in other domains.

As eCl@ss is copyrighted material, we are currently preparing the legal framework for a public

release of this ontology. Updated information and releases will available at

http://www.heppnetz.de/eclassowl/.

Used Modeling Patterns in OWL

Table 2 shows the OWL representation patterns for each of the components of eCl@ss.

One can see how the category “AKK255002” in the original standard translates into three classes

in the ontology, one for the generic concept “Agricultural Machine”, one for the taxonomy

concept “Agricultural Machine as an eCl@ss Category”, and one class that is a subclass of both

and can be used for the annotation of instances. The two properties “label” and “comment” are

identical in the example because the English version of eCl@ss does not yet have longer textual

definitions for a significant part of its classes. If the definition field in the original standard is

empty, we used the label as a substitute.

 Products and Services Ontologies: 31

Table 2: Modeling Patterns for eClassOWL

Ontology Component Representation in OWL

Classes and Hierarchy

<owl:Class rdf:ID="C_AKK255002-gen">
<rdfs:label xml:lang="en">Agricultural machine [generic concept]</rdfs:label>
<rdfs:comment xml:lang="en">Agricultural machine [generic concept]</rdfs:comment>
</owl:Class>

<owl:Class rdf:ID="C_AKK255002-tax">
<rdfs:label xml:lang="en">Agricultural machine [taxonomy concept]</rdfs:label>
<rdfs:comment xml:lang="en">Agricultural machine [taxonomy concept]</rdfs:comment>
<pcs:hierarchyCode>17080000</pcs:hierarchyCode>
<rdfs:subClassOf rdf:resource="&pcs;C_AKJ644002-tax"/>
</owl:Class>

<owl:Class rdf:ID="C_AKK255002">
<rdfs:label xml:lang="en">Agricultural machine</rdfs:label>
<rdfs:comment xml:lang="en">Agricultural machine</rdfs:comment>
<rdfs:subClassOf rdf:resource="&pcs;C_AKK255002-tax"/>
<rdfs:subClassOf rdf:resource="&pcs;C_AKK255002-gen"/>
</owl:Class>

Properties

<owl:DatatypeProperty rdf:ID="P_AAA826001">
<rdfs:domain rdf:resource="&owl;Thing"/>
<rdfs:range rdf:resource="&xsd;float"/>
<rdfs:label xml:lang="en">Input signal range max. (Unit: V)</rdfs:label>
<rdfs:comment xml:lang="en">Maximum value of the measured variable with a specified accuracy.</rdfs:comment>
</owl:DatatypeProperty>

Values

<pcs:PropertyValue rdf:ID="V_WPB317003">
<rdfs:label xml:lang="en">Highly explosive (Highly explosive)</rdfs:label>
<rdfs:comment xml:lang="en">Highly explosive</rdfs:comment>
</pcs:PropertyValue>

Keywords dc:subject for classes and properties

Class-Specific Property Lists

<owl:AnnotationProperty rdf:about="&pcs;recommendedProperty"/>
<owl:Class rdf:ID="C_AAA361001">
<pcs:recommendedProperty rdf:resource="&pcs;P_AAA001001"/>
<pcs:recommendedProperty rdf:resource="&pcs;P_AAA252001"/>
</owl:Class>

Value Recommendations

<owl:AnnotationProperty rdf:about="&pcs;recommendedValue"/>
<owl:ObjectProperty rdf:ID="P_AAA008001">
<pcs:recommendedValue rdf:resource="&pcs;V_WAA012001"/>
<pcs:recommendedValue rdf:resource="&pcs;V_WAA013001"/>
</owl:ObjectProperty>

Experiences

The eCl@ss standard is available at http://www.eclass.de in the form of separate CSV files

containing categories, properties, values, class-property recommendations, property-value

recommendations, and keywords. As the conversion process requires iterative queries, we first

imported those files into a relational database. The actual conversion was then done by a Java

application, accessing the database using JDBC.

The application of our methodology to eCl@ss creates only minor problems:

1. The rich data type definitions had to be mapped to the three XSD data types currently

supported by reasoners, i.e. xsd:integer, xsd:float, and xsd:string. Generally spoken are

the original data type definitions more restrictive. Thus any legal eCl@ss data can be

properly represented in the OWL variant. Precision issues could result when OWL data

 Products and Services Ontologies: 32

has to be converted back to fit into the original eCl@ss specification. We mapped all data

types of the kind NR1* to xsd:integer, NR2* and NR3* to xsd:float, and all others to

xsd:string.

2. The strings, especially labels and definitions, contain special characters, like the

ampersand (&), apostrophe (‘), and quotation mark (“), which are not allowed within

XML values. To make the RDF/XML serialization of our ontology valid XML, we had to

make sure that those characters are translated into proper XML codings (e.g. & for

the ampersand). This is not an issue when using proper tools for the XML serialization

but must be observed when the XML code is written directly to a file.

3. The labels of enumerated values are often not self-contained. The meaning can

sometimes only be grasped by looking at the recommended usage, i.e. for which property

they are meant. For example, the value “WPA173003” is labeled “right”, but actually

means the “door stop design type” “right”.

4. The resulting ontology is very big: About 25,000 categories in the source taxonomy result

in more than 75,000 OWL classes, plus about 5,000 properties. Even though the current

English version of eCl@ss does not contain long full text definitions of the classes (see

above), the total ontology size in RDF/XML exceeds 25 MB. This does not include the

property and value recommendations, which we store in two separate OWL files, because

they are not always needed and can be easily imported on demand.

The size of the ontology imposes unexpected problems when trying to use standard ontology

editors (e.g. Protégé), repositories/APIs (e.g. Jena 2), or validators (e.g. vowlidator). They all exit

with error messages when trying to process the full ontology. It was possible, though, to validate

and use a restricted version of the ontology that contains only a small subset of the actual eCl@ss

 Products and Services Ontologies: 33

concepts. Also, during the preparation of the final version of this paper, we were able to load the

full ontology plus all property recommendations plus a few instance data samples into an

OWLIM5 configuration.

While we started our work with version 5.0 of eCl@ss, we were able to generate new versions of

our ontology based on new releases of eCl@ss in a fully automated fashion. The only manual

steps required were importing the new CSV files into our RDBMS and updating the namespace

for the new release. The total time for creating the new ontology was less than two hours.

Running our script on other standards (e.g. RNTD and UNSPSC) would be basically require only

slight modifications in the embedded SQL statements and possibly minor changes in the

ontology patterns as shown in Table 2. Generating ontologies in other ontology languages than

OWL (e.g. WSML) would just require expressing the ontology patterns from Table 2 in the

respective ontology language, which should be easily possible.

Usage in e-Business Scenarios.

The following examples show how the resulting ontology can be used for various E-Business

scenarios:

Product Description in the Semantic Web: We assume that “Fendt Supermower“ is an

agricultural machine (eCl@ss category AKK255002), its weight is 125.5 kg, and the

manufacturer name is "Fendt". Assumed that the ID for this product instance is “machine1”, the

respective product description using the eCl@ss ontology would be as follows:

<pcs:C_AKK255002 rdf:ID="machine1">
 <pcs:P_BAD875001>125.50</pcs: P_BAD875001> <!-- Net Weight -->
 <pcs:P_BAA001001>Fendt</pcs:P_BAA001001> <!-- Manufacturer -->
 <pcs:P_BAA316001>Fendt Supermower1234</pcs:P_BAA316001> <!-- Name -->
</pcs:C_AKK255002>

5 http://www.ontotext.com/owlim/

 Products and Services Ontologies: 34

Now, we want to search for all agricultural machines in the ontology that weigh less than 160 kg.

The respective RDQL query would be:

SELECT ?x, ?weight, ?productName, ?vendor WHERE
(?x, <rdf:type>, <pcs:C_AKK255002-gen>)
(?x, <pcs:P_BAA001001>, ?vendor)
(?x, <pcs:P_BAA316001>, ?productName)
(?x, <pcs:P_BAD875001>, ?weight)
AND ?weight <160

Because we want to get only instances of the generic product category, the class to be used in the

query is C_AKK255002-gen, not C_AKK255002-tax. The later could be used to determine all

products that fall in the respective taxonomy category. For example, a store manager might want

to see all products in this product segment, including maintenance and spare parts for agricultural

machines. Just changing the class ID in the query to C_AKK255002-tax would return exactly

that.

Annotation of Incoming Invoices for Spend Analysis: As described, the usage of this ontology is

not limited to product description. It can also be employed to tag incoming invoices for spend

analysis and cost accounting. For this, we need the additional class „IncomingInvoice“ (a

concept for paid invoices), the annotation property „costAccountingCategory“, and the data type

property „totalInUSD“ for the total in US dollar.

<owl:Class rdf:ID="IncomingInvoice"/>
<owl:AnnotationProperty rdf:about="&pcs;costAccountingCategory"/>
<owl:DatatypeProperty rdf:ID="totalInUSD">
 <rdfs:domain rdf:resource="&pcs;IncomingInvoice"/>
 <rdfs:range rdf:resource="&xsd;float"/>
</owl:DatatypeProperty>

Then, we can annotate the incoming invoice over $ 1,200 for the above mentioned mower:

<pcs:IncomingInvoice rdf:ID="invoice1">
<pcs:totalInUSD>1200.00</pcs:totalInUSD>
<pcs:costAccountingCategory rdf:resource="&pcs;C_AKK255002"/>
</pcs:IncomingInvoice>

 Products and Services Ontologies: 35

In order to find all incoming invoices related to the cost accounting category C_AKJ644002-tax

(“Machine, device (for special applications)”, which is a superordinate class to C_AKK255002-

tax) and its subclasses, we can use the following RDQL query:

SELECT ?x, ?total WHERE
(?x, <rdf:type> <pcs:IncomingInvoice>)
(?x, <pcs:costAccountingCategory>, ?y)
(?y, <rdfs:subClassOf> <pcs:C_AKJ644002-tax>)
(?x, <pcs:totalInUSD>, ?total)

Especially the fact that we have a sophisticated set of properties in the ontology allows for rich

descriptions of the items, which eases rule-based content integration significantly. For example,

we can use a combination of (1) taxonomy class information and (2) property ranges to

automatically find the proper cost accounting category. A realistic scenario is that we infer the

cost accounting ledger from a combination of the supplier name and the products and service

category. For example, invoices referring to the category “Services (unclassified)” will be treated

as “IT services” if the supplier is “IBM”, and “Building maintenance” if the supplier is

“Southwest Carpet Cleaning”.

Accessing Recommended Properties and Property Values: We can also easily determine the

recommended properties for a given class or the recommended property value instances for a

given property with a simple RDQL query. As per definition, the properties are assigned to the

annotation class, and not to the generic or taxonomy concept.

Find recommended properties for C_AKK255002:
SELECT ?property WHERE
(<pcs:C_AKK255002>, <pcs:recommendedProperty> ?property)

Find recommended values for ObjectProperty P_XYZ001001:
SELECT ?value WHERE
(<pcs:P_XYZ001001>, <pcs:recommendedValue> ?value)

 Products and Services Ontologies: 36

5 Discussion

We have presented a proposal of how eCl@ss and similar industrial taxonomies for products and

services categories can be transformed into OWL ontologies, including dictionaries of properties,

enumerative property values, and recommendations that map properties to classes and such that

map property values to properties. While previous works, e.g. (Klein, 2002), (McGuinness,

2001), and (Bizer & Wolk, 2003) are rather early prototypes that were mechanically derived

from the original standards without a more intensive analysis of the reused standards and their

original application domain, we aimed at creating a fully-fledged, industrial strength ontology for

the representation of products and services in the Semantic Web. To a certain degree, we were

surprised how little previous attempts of serious ontology engineering for products and services

exists, for we think that comprehensive ontologies in this domain are a prerequisite for almost

any serious E-Business application of Semantic Web technology.

Our proposal comes not without cost. First, the resulting ontology provides quite limited

reasoning support. Second, the resulting ontology serializations are very large and exceed the

ontology size that most current ontology infrastructure can handle. In the following, we discuss

these two aspects.

Limited Amount of Reasoning support

Readers from the traditional ontology engineering field might criticize the shallowness of the

generic concepts. It is true that the generic products and services concepts do not support much

reasoning, for they are just named classes. However, the semantic richness needed for most

business scenarios will come from the usage of the huge collection of properties. An example is

a parametric search like “find all TV sets made by Siemens with a screen size between 10 and 15

inches and 12 Volt power-supply”. Of course, we agree that a greater amount of e.g. axioms

 Products and Services Ontologies: 37

would be generally desirable. On the other hand, we see no simple way of automatically adding

these axioms, because they cannot be easily derived from the input standard. Additionally, we

will have to put the resources necessary for the respective axiomatic enrichment in relation to the

gain in automation and the resulting economies. In a domain as dynamic as products and services

it should not be taken for granted that the business benefit will always outweigh the cost of the

creation of the respective ontologies, nor that we are able to yield axiomatic richness during the

lifespan of the concept, i.e. as long as the category is still relevant. Also, it has recently been

pointed out by (Gruber, 2005) that such “semiformal” ontologies are practically very relevant.

Size

The resulting ontologies are very big, with file sizes of more than 25 MB. This causes a problem

with most current OWL tools and repositories, resulting in memory errors or very slow

processing. The Jena framework6 and many Jena-based tools (e.g. vowlidator7 and Protégé 3.08)

do not load an ontology of this size, but exit with an out-of-memory exception. This might be

resolvable by changing the memory allocation for the JVM. However, the underlying reason

seems to be that all popular DL reasoners require an in-memory model of the whole ontology,

which does not work well with such big ontologies; and that OWL Lite as the simplest language

variant of OWL still requires DL-based reasoner support (see (Fensel, 2004), p. 45).

There are approaches towards more scalable OWL reasoning (Bechhofer, Horrocks, & Turi,

2005) based on a hybrid reasoner/database architecture; however, the described architecture aims

6 http://jena.sourceforge.net/

7 http://owl.bbn.com/validator/

8 http://protege.stanford.edu/

 Products and Services Ontologies: 38

at improving the scalability in terms of instance data, while our ontologies are big already at the

“TBox” level.

The advent of more suitable ontology languages, especially reductions of OWL (see e.g. (Bruijn,

Lara, Polleres, & Fensel, 2005) or (Kiryakov, Ognyanov, & Manov, 2005)) and WSML (de

Bruijn et al., 2005) as a family of languages that allows a trade-off decision between expressivity

of the language and reasoning costs might improve the situation.

The proposed methodology creates three ontology classes per each node in the original

taxonomy and thus directly contributes to large ontologies. This is obviously a disadvantage and

there can be cases where the original taxonomy is already so big that tripling the number of

ontology classes is rendered unfeasible. However, this weakness of the proposed approach has to

be judged in the proper context. First of all, the size of the “schema part” (or TBox, if you want)

will, in many cases, be significantly smaller than the instance data part. Thus, the increased

number of ontology concepts will have a much lesser overall impact when compared to the total

size of the ontology. Second, it is possible to partition the resulting ontology into to modules, one

module containing the generic and the other module containing the taxonomy part and thus avoid

the conceptual overhead in scenarios that do not require both views. In some cases, the hierarchy

might be so inconsistent that it is not justified to take the effort of representing it. Then, it is

recommendable to just derive named classes without a hierarchy in the ontology. Third, the

proposal requires no reasoning support beyond rdfs:subClassOf and will thus work with faster,

limited reasoners. Even an RDF-S reasoner would be sufficient, which means that the unwanted

ontology growth has to be set in relation to the very much reduced reasoning costs.

A very advantageous property of the proposed methodology is that it can be applied

mechanically without human intervention. From a business perspective, the unwanted ontology

 Products and Services Ontologies: 39

growth has to be judged in comparison to the gain in automation of the ontology building

process.

In general we think that, at least in the E-Business domain, the size of the resulting ontologies is

not a serious argument against their usefulness. For three reasons, we assume that quite the

opposite is true: First, we must stress that ontologies of this size will rather be the lower limit of

what we will have to expect for non-toy ontologies in E-Business scenarios. Using traditional

relational databases and COTS application software, even small companies are dealing with such

amounts of data. Second, we conclude from the experienced limitations with current tools not

that the ontology is too big, but that many prototypes yielded by the Semantic Web community

have so far not achieved scalability beyond toy applications. It should be noted, though, that the

situation has improved a lot since our first experiments (in April 2004) and November 2005. As

of November 7, 2005 we were able to load the full ontology plus all property recommendations

plus a few instance data samples into an OWLIM configuration. Query times for the sample

queries described in section 4 remained below 100 ms.

Third, we expect our ontology to become a widely used benchmark among the developers of

repositories and tools, and will thus hopefully contribute to a quick gain in scalability of

Semantic Web infrastructure.

Implications

Our work presented in this paper has the following theoretical and practical implications:

Theoretical: We contributed to a better understanding of the reuse of taxonomies for the creation

of ontologies. This is relevant, since existing taxonomies are likely the most valuable asset for

reuse that is available for building ontologies. Especially, we described how the interpretation of

the taxonomic relation is an important modelling decision.

 Products and Services Ontologies: 40

Practical: Our work can be used as a large-scale benchmark for ontology infrastructure,

especially repositories and editing and browsing components. Also, the resulting ontology

eClassOWL can be used to build real business applications for E-Procurement, spend analysis, or

catalog data integration and thus help demonstrate the business benefits of Semantic Web

technology.

6 Conclusion

In this paper, we introduced a methodology for deriving fully-fledged OWL Lite ontologies from

products and services categorization standards. We showed how the intension of the taxonomy

concepts is directly influenced by the interpretation of the taxonomic relationship, and how the

creation of a set of three separate ontology classes representing (1) the generic concept, (2) the

taxonomy concept, and (3) an annotation concept for each taxonomy category yields far more

useful ontologies than one single ontology class per taxonomy category, especially if the later is

in combination with rigid mapping of the taxonomy relationship to rdfs:subClassOf, as currently

in use. Additionally, we developed an approach of how property dictionaries, enumerated values,

class-property recommendations, and property-value recommendations can be captured in an

OWL ontology while staying well within the limitations of OWL Lite.

We then successfully applied this methodology to the comprehensive categorization standard

eCl@ss and yielded a fully-fledged ontology for the product and services domain, reflecting

more than 25,000 product types in 75,000 ontology classes plus a collection of more than 5,000

sophisticated properties. The resulting OWL version of eCl@ss 5.1 is currently the most

comprehensive, horizontal products and services ontology that we know of, leaves the current

“toy” level of many previous other ontologies behind, and is fully usable for product description

 Products and Services Ontologies: 41

and spend analysis item tagging, which we regard as two very important usages of Semantic

Web technology in business applications.

Acknowledgements: I would like to thank Jos de Bruijn, Axel Polleres, Amit Sheth, and the

anonymous reviewers for very valuable comments on previous versions of this paper.

References

Bechhofer, S., Horrocks, I., & Turi, D. (2005, July 22-27). The OWL Instance Store: System
Description. Paper presented at the 20th International Conference on Automated
Deduction (CADE-20), Tallinn, Estonia.

Berners-Lee, T. (1998). Cool URIs don't change. Retrieved November 8, 2004, from
http://www.w3.org/Provider/Style/URI.html

Bizer, C., & Wolk, J. (2003). RDF Version of the eClass 4.1 Product Classification Schema.
Retrieved August 16, 2005, from http:////www.wiwiss.fu-
berlin.de/suhl/bizer/ecommerce/eClass-4.1.rdf

Brachman, R. J. (1983). What IS-A Is and Isn't: An Analysis of Taxonomic Links in Semantic
Networks. IEEE Computer, 16(10), 30-36.

Bruijn, J. d., Lara, R., Polleres, A., & Fensel, D. (2005, May 10-14). OWL DL vs. OWL Flight:
Conceptual Modeling and Reasoning for the Semantic Web. Paper presented at the 14th
International World Wide Web Conference (WWW2005), Chiba, Japan.

de Bruijn, J. (2003). Using Ontologies. Enabling Knowledge Sharing and Reuse on the Semantic
Web. DERI Technical Report DERI-2003-10-29, October 2003, 1-49.

de Bruijn, J., Lausen, H., Krummenacher, R., Polleres, A., Predoiu, L., Kifer, M., et al. (2005).
D16.1v0.21 The Web Service Modeling Language WSML. WSML Final Draft. Retrieved
November 7, 2005, from http://www.wsmo.org/TR/d16/d16.1/v0.21/.

Fairchild, A. M., & de Vuyst, B. (2002). Coding Standards Benefiting Product and Service
Information in E-Commerce. Paper presented at the 35th Annual Hawaii International
Conference on System Sciences (HICSS-35).

Fensel, D. (2004). Ontologies: A Silver Bullet for Knowledge Management and Electronic
Commerce (2nd ed.). Berlin etc.: Springer.

Fensel, D., Ding, Y., Omelayenko, B., Schulten, E., Botquin, G., Brown, M., et al. (2001).
Product Data Integration in B2B E-Commerce. IEEE Intelligent Systems, 16(4), 54-59.

Fensel, D., McGuinness, D. L., Schulten, E., Ng, W. K., Lim, E.-P., & Yan, G. (2001).
Ontologies and Electronic Commerce. IEEE Intelligent Systems, 16(1), 8-14.

Fernández-López, M., & Gómez-Pérez, A. (2002). Overview and analysis of methodologies for
building ontologies. The Knowledge Engineering Review, 17(2), 129-156.

Giunchiglia, F., Marchese, M., & Zaihrayeu, I. (2005, July 9-10, 2005). Towards a Theory of
Formal Classification. Paper presented at the AAAI-05 Workshop on Contexts and
Ontologies: Theory, Practice and Applications (C&O-2005), Pittsburgh, Pennsylvania,
USA.

 Products and Services Ontologies: 42

Gruber, T. (2005). Every ontology is a treaty - a social agreement - among people with some
common motive in sharing. AIS SIGSEMIS Bulletin, 1(3), 4-8.

Hepp, M. (2004). Measuring the Quality of Descriptive Languages for Products and Services. In
F.-D. Dorloff, J. Leukel & V. Schmitz (Eds.), E-Business - Standardisierung und
Integration. Tagungsband zur Multikonferenz Wirtschaftsinformatik 2004 (pp. 157-168).
Göttingen: Cuvillier.

Hepp, M. (2005a, May 26-28). A Methodology for Deriving OWL Ontologies from Products and
Services Categorization Standards. Paper presented at the 13th European Conference on
Information Systems (ECIS2005), Regensburg, Germany.

Hepp, M. (2005b, November 7). Representing the Hierarchy of Industrial Taxonomies in OWL:
The gen/tax Approach. Paper presented at the ISWC Workshop Semantic Web Case
Studies and Best Practices for eBusiness (SWCASE05), Galway, Irland.

Hepp, M., Leukel, J., & Schmitz, V. (2005a, March 29 - April 1, 2005). Content Metrics for
Products and Services Categorization Standards. Paper presented at the IEEE
International Conference on e-Technology, e-Commerce and e-Service (EEE-05), Hong
Kong.

Hepp, M., Leukel, J., & Schmitz, V. (2005b, October 18-20). A Quantitative Analysis of eCl@ss,
UNSPSC, eOTD, and RNTD Content, Coverage, and Maintenance. Paper presented at the
IEEE ICEBE 2005, Beijing, China.

Kim, D., Kim, J., & Lee, S.-g. (2002, February 24-25). Catalog Integration for Electronic
Commerce through Category-Hierarchy Merging Technique. Paper presented at the 12th
International Workshop on Research Issues in Data Engineering: Engineering E-
Commerce/E-Business Systems (RIDE'02), San Jose, CA, USA.

Kim, D., Lee, S.-g., Chun, J., & Lee, J. (2004, July 6-9). A Semantic Classification Model for e-
Catalogs. Paper presented at the IEEE Conference on E-Commerce Technology
(CEC'04), San Diego, CA, USA.

Kiryakov, A., Ognyanov, D., & Manov, D. (2005, November 20). OWLIM – a Pragmatic
Semantic Repository for OWL. Paper presented at the International Workshop on Scalable
Semantic Web Knowledge Base Systems (SSWS 2005), New York City, USA.

Klein, M. (2001). Schema Definition for the Representation of the UNSPSC Classification in
RDF-Schema. Retrieved October 7, 2005, from
http://139.91.183.30:9090/RDF/VRP/Examples/unspsc1.rdf

Klein, M. (2002). DAML+OIL and RDF Schema representation of UNSPSC. Retrieved April 23,
2004, from http://www.cs.vu.nl/~mcaklein/unspsc/

McGuinness, D. L. (2001). UNSPSC Ontology in DAML+OIL. Retrieved November 5, 2004,
from http://www.ksl.stanford.edu/projects/DAML/UNSPSC.daml

Ng, W. K., Yan, G., & Lim, E.-P. (2000). Heterogeneous Product Description in Electronic
Commerce. ACM SIGEcom Exchanges, 1(1), 7-13.

Obrst, L., Wray, R. E., & Liu, H. (2001, October 17-19). Ontological Engineering for B2B E-
Commerce. Paper presented at the International Conference on Formal Ontology in
Information Systems (FOIS'01), Ogunquit, Maine, USA.

Paslaru Bontas, E. (2005, June 13-14). Using Context Information to Improve Ontology Reuse.
Paper presented at the Doctoral Consortium at the 17th Conference on Advanced
Information Systems Engineering (CAiSE'05), Porto, Portugal.

Schulten, E., Akkermans, H., Botquin, G., Dörr, M., Guarino, N., Lopes, N., et al. (2001). The E-
Commerce Product Classification Challenge. IEEE Intelligent Systems, 16(4), 86-89.

 Products and Services Ontologies: 43

U.S. Census Bureau. (2004). North American Industry Classification System (NAICS). Retrieved
November 5, 2004, from http://www.census.gov/epcd/www/naics.html

van Assem, M., Menken, M. R., Schreiber, G., Wielemaker, J., & Wielinga, B. J. (2004,
November 7-11). A Method for Converting Thesauri to RDF/OWL. Paper presented at the
ISWC'04, Hiroshima, Japan.

W3C. (2001). XML Schema Part 2: Datatypes Second Edition. W3C Recommendation 28
October 2004. Retrieved November 15, 2004, from http://www.w3.org/TR/xmlschema-2/

W3C. (2005). XML Schema Datatypes in RDF and OWL. W3C Working Draft 27 April 2005.
Retrieved Nov. 7, 2005, from http://www.w3.org/TR/swbp-xsch-datatypes/

Wielinga, B. J., Schreiber, A. T., & Sandberg, J. A. C. (2001, October 21-23). From Thesaurus
to Ontology. Paper presented at the First International Conference on Knowledge Capture
(K-CAP 2001), Victoria, British Columbia, Canada.

Wielinga, B. J., Wielemaker, J., Schreiber, G., & van Assem, M. (2004, May 10-12). Methods
for Porting Resources to the Semantic Web. Paper presented at the Proceedings of the
First European Semantic Web Symposium (ESWS'04), Heraklion, Greece.

 Products and Services Ontologies: 44

Appendix

Modeling Patterns used in OWL

O
nt

ol
og

y
C

om
po

ne
nt

R
ep

re
se

nt
at

io
n

in
 O

W
L

C
la

ss
es

 a
nd

 H
ie

ra
rc

hy

<
o
w
l
:
C
l
a
s
s

r
d
f
:
I
D
=
"
C
_
A
K
K
2
5
5
0
0
2
-
g
e
n
"
>

<
r
d
f
s
:
l
a
b
e
l

x
m
l
:
l
a
n
g
=
"
e
n
"
>
A
g
r
i
c
u
l
t
u
r
a
l

m
a
c
h
i
n
e

[
g
e
n
e
r
i
c

c
o
n
c
e
p
t
]
<
/
r
d
f
s
:
l
a
b
e
l
>

<
r
d
f
s
:
c
o
m
m
e
n
t

x
m
l
:
l
a
n
g
=
"
e
n
"
>
A
g
r
i
c
u
l
t
u
r
a
l

m
a
c
h
i
n
e

[
g
e
n
e
r
i
c

c
o
n
c
e
p
t
]
<
/
r
d
f
s
:
c
o
m
m
e
n
t
>

<
/
o
w
l
:
C
l
a
s
s
>

<
o
w
l
:
C
l
a
s
s

r
d
f
:
I
D
=
"
C
_
A
K
K
2
5
5
0
0
2
-
t
a
x
"
>

<
r
d
f
s
:
l
a
b
e
l

x
m
l
:
l
a
n
g
=
"
e
n
"
>
A
g
r
i
c
u
l
t
u
r
a
l

m
a
c
h
i
n
e

[
t
a
x
o
n
o
m
y

c
o
n
c
e
p
t
]
<
/
r
d
f
s
:
l
a
b
e
l
>

<
r
d
f
s
:
c
o
m
m
e
n
t

x
m
l
:
l
a
n
g
=
"
e
n
"
>
A
g
r
i
c
u
l
t
u
r
a
l

m
a
c
h
i
n
e

[
t
a
x
o
n
o
m
y

c
o
n
c
e
p
t
]
<
/
r
d
f
s
:
c
o
m
m
e
n
t
>

<
p
c
s
:
h
i
e
r
a
r
c
h
y
C
o
d
e
>
1
7
0
8
0
0
0
0
<
/
p
c
s
:
h
i
e
r
a
r
c
h
y
C
o
d
e
>

<
r
d
f
s
:
s
u
b
C
l
a
s
s
O
f

r
d
f
:
r
e
s
o
u
r
c
e
=
"
&
p
c
s
;
C
_
A
K
J
6
4
4
0
0
2
-
t
a
x
"
/
>

<
/
o
w
l
:
C
l
a
s
s
>

<
o
w
l
:
C
l
a
s
s

r
d
f
:
I
D
=
"
C
_
A
K
K
2
5
5
0
0
2
"
>

<
r
d
f
s
:
l
a
b
e
l

x
m
l
:
l
a
n
g
=
"
e
n
"
>
A
g
r
i
c
u
l
t
u
r
a
l

m
a
c
h
i
n
e
<
/
r
d
f
s
:
l
a
b
e
l
>

<
r
d
f
s
:
c
o
m
m
e
n
t

x
m
l
:
l
a
n
g
=
"
e
n
"
>
A
g
r
i
c
u
l
t
u
r
a
l

m
a
c
h
i
n
e
<
/
r
d
f
s
:
c
o
m
m
e
n
t
>

<
r
d
f
s
:
s
u
b
C
l
a
s
s
O
f

r
d
f
:
r
e
s
o
u
r
c
e
=
"
&
p
c
s
;
C
_
A
K
K
2
5
5
0
0
2
-
t
a
x
"
/
>

<
r
d
f
s
:
s
u
b
C
l
a
s
s
O
f

r
d
f
:
r
e
s
o
u
r
c
e
=
"
&
p
c
s
;
C
_
A
K
K
2
5
5
0
0
2
-
g
e
n
"
/
>

<
/
o
w
l
:
C
l
a
s
s
>

Pr
op

er
tie

s

<
o
w
l
:
D
a
t
a
t
y
p
e
P
r
o
p
e
r
t
y

r
d
f
:
I
D
=
"
P
_
A
A
A
8
2
6
0
0
1
"
>

<
r
d
f
s
:
d
o
m
a
i
n

r
d
f
:
r
e
s
o
u
r
c
e
=
"
&
o
w
l
;
T
h
i
n
g
"
/
>

<
r
d
f
s
:
r
a
n
g
e

r
d
f
:
r
e
s
o
u
r
c
e
=
"
&
x
s
d
;
f
l
o
a
t
"
/
>

<
r
d
f
s
:
l
a
b
e
l

x
m
l
:
l
a
n
g
=
"
e
n
"
>
I
n
p
u
t

s
i
g
n
a
l

r
a
n
g
e

m
a
x
.

(
U
n
i
t
:

V
)
<
/
r
d
f
s
:
l
a
b
e
l
>

<
r
d
f
s
:
c
o
m
m
e
n
t

x
m
l
:
l
a
n
g
=
"
e
n
"
>
M
a
x
i
m
u
m

v
a
l
u
e

o
f

t
h
e

m
e
a
s
u
r
e
d

v
a
r
i
a
b
l
e

w
i
t
h

a

s
p
e
c
i
f
i
e
d

a
c
c
u
r
a
c
y
.
<
/
r
d
f
s
:
c
o
m
m
e
n
t
>

<
/
o
w
l
:
D
a
t
a
t
y
p
e
P
r
o
p
e
r
t
y
>

Va
lu

es

<
p
c
s
:
P
r
o
p
e
r
t
y
V
a
l
u
e

r
d
f
:
I
D
=
"
V
_
W
P
B
3
1
7
0
0
3
"
>

<
r
d
f
s
:
l
a
b
e
l

x
m
l
:
l
a
n
g
=
"
e
n
"
>
H
i
g
h
l
y

e
x
p
l
o
s
i
v
e

(
H
i
g
h
l
y

e
x
p
l
o
s
i
v
e
)
<
/
r
d
f
s
:
l
a
b
e
l
>

<
r
d
f
s
:
c
o
m
m
e
n
t

x
m
l
:
l
a
n
g
=
"
e
n
"
>
H
i
g
h
l
y

e
x
p
l
o
s
i
v
e
<
/
r
d
f
s
:
c
o
m
m
e
n
t
>

<
/
p
c
s
:
P
r
o
p
e
r
t
y
V
a
l
u
e
>

K
ey

w
or

ds
d
c
:
s
u
b
j
e
c
t

fo
r c

la
ss

es
 a

nd
 p

ro
pe

rti
es

C
la

ss
-S

pe
ci

fic
 P

ro
pe

rt
y

Li
st

s

<
o
w
l
:
A
n
n
o
t
a
t
i
o
n
P
r
o
p
e
r
t
y

r
d
f
:
a
b
o
u
t
=
"
&
p
c
s
;
r
e
c
o
m
m
e
n
d
e
d
P
r
o
p
e
r
t
y
"
/
>

<
o
w
l
:
C
l
a
s
s

r
d
f
:
I
D
=
"
C
_
A
A
A
3
6
1
0
0
1
"
>

<
p
c
s
:
r
e
c
o
m
m
e
n
d
e
d
P
r
o
p
e
r
t
y

r
d
f
:
r
e
s
o
u
r
c
e
=
"
&
p
c
s
;
P
_
A
A
A
0
0
1
0
0
1
"
/
>

<
p
c
s
:
r
e
c
o
m
m
e
n
d
e
d
P
r
o
p
e
r
t
y

r
d
f
:
r
e
s
o
u
r
c
e
=
"
&
p
c
s
;
P
_
A
A
A
2
5
2
0
0
1
"
/
>

<
/
o
w
l
:
C
l
a
s
s
>

Va
lu

e
R

ec
om

m
en

da
tio

ns

<
o
w
l
:
A
n
n
o
t
a
t
i
o
n
P
r
o
p
e
r
t
y

r
d
f
:
a
b
o
u
t
=
"
&
p
c
s
;
r
e
c
o
m
m
e
n
d
e
d
V
a
l
u
e
"
/
>

<
o
w
l
:
O
b
j
e
c
t
P
r
o
p
e
r
t
y

r
d
f
:
I
D
=
"
P
_
A
A
A
0
0
8
0
0
1
"
>

<
p
c
s
:
r
e
c
o
m
m
e
n
d
e
d
V
a
l
u
e

r
d
f
:
r
e
s
o
u
r
c
e
=
"
&
p
c
s
;
V
_
W
A
A
0
1
2
0
0
1
"
/
>

<
p
c
s
:
r
e
c
o
m
m
e
n
d
e
d
V
a
l
u
e

r
d
f
:
r
e
s
o
u
r
c
e
=
"
&
p
c
s
;
V
_
W
A
A
0
1
3
0
0
1
"
/
>

<
/
o
w
l
:
O
b
j
e
c
t
P
r
o
p
e
r
t
y
>

