
Generating Ontologies via Language

Components and Ontology Reuse

Yihong Ding1, Deryle Lonsdale2, David W. Embley1, Martin Hepp3, and
Li Xu4

1 Department of Computer Science, Brigham Young University, U.S.A.
{ding,embley}@cs.byu.edu

2 Department of Linguistics, Brigham Young University, U.S.A.
lonz@byu.edu

3 Digital Enterprise Research Institute (DERI), University of Innsbruck, Austria
martin.hepp@deri.org

4 Department of Computer Science, University of Arizona South, U.S.A.
lxu@email.arizona.edu

Abstract. Realizing the Semantic Web involves creating ontologies, a
tedious and costly challenge. Reuse can reduce the cost of ontology en-
gineering. Ontologies already created in recent Semantic Web research
provide useful input for ontology reuse. However, automated ontology
reuse remains underexplored. This paper presents a generic architec-
ture for automated ontology reuse. With our implementation of this ar-
chitecture, we show the practicality of automating ontology generation
through ontology reuse. We experimented with a large generic ontology
(MikroKosmos) as a basis for automatically generating domain ontolo-
gies that fit the scope of sample natural-language web pages. The results
were encouraging, resulting in five lessons pertinent to future automated
ontology reuse study.

1 Introduction

Ontology construction is a central research issue for the Semantic Web. On-
tologies provide a way of formalizing human knowledge to enable machine in-
terpretability. Creating ontologies from scratch is, however, usually tedious and
costly. When the Semantic Web requires ontologies that express Web page con-
tent, the ontology engineering task becomes too expensive to be done manually.
Many Semantic Web ontologies may have overlapping domain descriptions be-
cause many Web sites (or pages) contain information in common domains. It is
inefficient to redo ontology engineering for pre-explored domains. These issues
illustrate the importance of automated ontology reuse for the Semantic Web.

Ontology reuse involves building a new ontology through maximizing the
adoption of pre-used ontologies or ontology components. Reuse has several ad-
vantages. First, it reduces human labor involved in formalizing ontologies from
scratch. It also increases the quality of new ontologies because the reused com-
ponents have already been tested. Moreover, when two ontologies share compo-
nents through ontology reuse, mapping between them becomes simpler because



2 Yihong Ding and et. al.

mappings between their shared components are trivial. One can also simulta-
neously update multiple ontologies by updating their commonly reused compo-
nents. Hence ontology reuse also improves the efficiency of ontology maintenance.

Despite the many advantages of (automated) ontology reuse, the topic is not
well explored in the literature. There are many reasons for this. Before the advent
of the Semantic Web, few ontologies existed. Due to the difficulty of construct-
ing ontologies, as well as to the challenges of using ontologies in applications,
researchers were less interested in ontology development. With the advance of
Semantic Web technologies, the number of ontologies has significantly increased
recently. When the use of ontologies in Semantic Web applications improves sys-
tem performance, more people will realize the benefit of using ontologies. In the
meantime, most existing ontologies are hard to reuse. The benefits of manual
ontology reuse are often unclear since the overhead of seeking and understand-
ing existing ontologies by humans may be even greater than simply building an
ontology from scratch. At the same time, many existing ontologies simply do not
support effectively automated ontology reuse. The corresponding information in
these ontologies is hard to retrieve for automated ontology reuse.

The work we describe below5 offers three contributions for automated on-
tology reuse. First, though, we sketch the state of the art in ontology reuse
(Section 2). We then present our generic ontology reuse architecture and our
implementation (Section 3). Next, we discuss our experimental results obtained
by using our implementation on real-world examples, as well as five lessons we
have learned from this work (Section 4). Finally, we mention possible future
directions (Section 5).

2 Related Work

Ontology reuse has been studied for years. Most of the earlier research focuses on
the study of reusable ontology repositories. In 2001, Ding and Fensel [7] surveyed
these earlier ontology libraries. Due to the lack of ontologies, however, very few
studies on practically reusing ontologies exist prior to this survey. Uschold and
his colleagues [13] presented a “start-to-finish process” of reusing an existing
ontology in a small-scale application. According to the authors, the purpose was
a “feasibility demonstration only.” They concluded that reusing an ontology was
“far from an automated process” at that time.

With the growth of semantic web research, more and more ontologies have
been created and used in real-world applications. Researchers have started to
address more of the ontology reuse problem. Typically, there are two strands of
study: theoretical studies of ontology reusability [2, 4, 8], and practical studies
of ontology reuse [1, 11, 12]. Previous studies of ontology libraries showed that
it was difficult to manage heterogeneous ontologies in simple repositories. Stan-
dardized modules may significantly improve the reusability of ontologies. One

5 This work was partially funded under National Science Foundataion Information
and Intelligent Systems grant IIS-0414644. See also www.deg.byu.edu.



Generating Ontologies via ... 3

major purpose of modular ontology research concerns the reusability of ontolo-
gies [2, 4, 8]. There are, however, fewer ontology reuse studies quantifying how
modular ontologies may improve the efficiency of ontology reuse. Hence one of
our purposes is to argue for the use of modular ontologies in real-world, auto-
mated ontology reuse experiments.

Meanwhile, there are also several studies on practical ontology reuse. Noy and
Musen [11] introduced “traversal views” that define an ontology view, through
which a user can specify a subset of an existing ontology. This mechanism en-
ables users to extract self-contained portions of an ontology describing specific
concepts. Stuckenschmidt and Klein [12] described another process for parti-
tioning very large ontologies into sets of meaningful and self-contained modules
through a structure-based algorithm. Alani and his colleagues [1] coined a new
term for reusing existing ontologies: ontology winnowing. The intuition of their
research is that individual semantic web applications more profitably use smaller
customized ontologies rather than larger general-purpose ontologies. They there-
fore described a method for culling out—which they called winnowing—useful
application-specific information from a larger ontology.

A common implicit assumption in all these practical ontology reuse stud-
ies is that source ontologies must be reusable for a target domain. Although
this assumption simplifies the problem, it does not address the general situa-
tion. Besides our work, to the best of our knowledge, the only research that
has addressed (albeit implicitly) the domain-specific ontology reuse problem is
by Bontas and her colleagues [3]. Their case studies on ontology reuse identi-
fied difficulties due to end-user unfamiliarity with the complex source structure.
Although this assessment is reasonable, we found a further reason for the dif-
ficulty they encountered. Even though source ontologies often declare a target
domain, the corresponding information is irretrievable for automated ontology
reuse. This is the real bottleneck for automated ontology reuse.

3 Automated Ontology Reuse

Figure 1 shows our generic architecture for automated ontology reuse. An auto-
mated ontology reuse procedure should take at least two inputs: natural language
(NL) documents and source ontologies. NL documents express the projecting
domain and they can encompass different types. Typical NL documents could
include collections of competency questions [14] or collections of sample Web
pages [5].

In this architecture, ontology reuse consists of three sequential steps: con-
cept selection, relation retrieval, and constraint discovery. These correspond to
the three fundamental components in ontologies: concepts, relationships, and
constraints. The concept selection process identifies reusable ontology concepts
from source ontologies based on the descriptions in NL documents. NL docu-
ments must contain sufficient information for a system to identify all the nec-
essary domain concepts. The identification methodologies vary with respect to
different types of NL documents. The relation retrieval process retrieves relation-



4 Yihong Ding and et. al.

Fig. 1. Generic Architecture of Automated Ontology Reuse.

ships among selected concepts from the previous step. These relationships can
be automatically gathered from source ontologies or perhaps even (optionally)
recoverable from the NL documents. Figure 1 represents these optional require-
ments with dotted lines. The constraint discovery process discovers constraints
for previous selected concepts and relationships. An ontology reuse system should
be able to gather existing information about constraints from source ontologies
or even perhaps from NL documents.

After these three sequential steps, the system composes the selected concepts,
relationships, and constraints together into a unified ontology. Human experts
then inspect and revise these auto-generated ontologies.

We have implemented a prototype automated ontology reuse system based
on this generic architecture. Our system reuses existing ontologies to create small
domain ontologies within the scope of describing individual Web pages. In the
rest of this section we describe the system in fuller detail.

Preparation of Input We first take a small set of sample Web pages as input
NL documents, and pre-process them to focus on the domain of interest (i.e. re-
moving advertisement and side bars). Only the main body of each page remains,
which constitutes the focus of interest for readers.

Proper preparation of source ontologies is essential for ontology reuse automa-
tion. Poorly integrated source ontologies create a very complex ontology integra-
tion problem during final composition of the output ontology. Two options exist:
either we can directly adopt a single large-scale ontology, or we can manually
pre-integrate several small ones. For simplicity, we chose the first option (and will
discuss the second option later). Specifically, we adopted the MikroKosmos (µK)
ontology [10], a large-scale ontology containing more than 5000 hierarchically-
arranged concepts (excluding instances). These concepts cover various domains,
a desideratum for flexible experimentation. The µK ontology has an average of
14 inter-concept links per node, providing rich interpretations for the defined
concepts.

To automate our ontology reuse process, we pre-integrated the leaf concepts
from the µK ontology with external lexicon dictionaries and declarative data



Generating Ontologies via ... 5

Fig. 2. Pre-Integrated Source Ontology.

recognizers, as Figure 2 shows. These augmentations are essential for automated
ontology-concept recognition. Most of these lexicons and data recognizers are
collected from the Web. For example, for the ontology concept CAPITAL-CITY

we used a web browser to locate lists of all the capital cities of the independent
countries in the world. Since we collected information from varied resources,
we found that synonym identification became critical for the performance of
ontology reuse. We therefore adopted WordNet6 for our synonym resource.

Although this source ontology preparation process is quite involved, it is a
one-time effort. This integrated ontology source thus become static and constant
for all downstream ontology reuse applications.

Ontology Reuse Process Figure 1 shows how our system extracts an appro-
priate sub-domain from a larger, integrated source ontology by executing concept
selection, relation retrieval, and constraint discovery. Since any ontology can be
viewed as a conceptual graph, our algorithm is implemented to find nodes, edges,
and specific constraints in graphs.

(1) Concept selection: We have implemented the concept-selection process as
two concept-recognition procedures (which could be executed in parallel) and
a concept-disambiguation procedure. In particular, the two recognition proce-
dures involve concept-name matching and concept-value matching. Concept-
name matching associates content in NL documents with concept names in
source ontologies. For example, this procedure matches the word “capital” in the
sentence “Afghanistan’s capital is Kabul and its population is 17.7 million.” to
the ontology concepts CAPITAL-CITY and FINANCIAL-CAPITAL. The system
hence associates both of the concepts as candidate concepts in the target domain.
Concept-value matching associates content in NL documents with concept rec-
ognizers that have been pre-integrated during the source-ontology-preparation
stage. For example, in the same sentence above, this procedure matches the word
“Kabul” with the concept CAPITAL-CITY.

6 http://wordnet.princeton.edu/



6 Yihong Ding and et. al.

The concept disambiguation procedure follows the previous two recognition
procedures. Since the source ontology contains thousands of concepts whereas the
target domain may only contain dozens, we often encounter considerable ambi-
guity on selected concept candidates. In the previous example the system recog-
nizes both CAPITAL-CITY and FINANCIAL-CAPITAL as matched for a com-
mon data instance. Concept disambiguation solves this type of problem. In our
example, the system knows that CAPITAL-CITY and FINANCIAL-CAPITAL

cannot both be valid candidates because the word “capital” should have one
and only one meaning in the sentence. At the same time, since the concept-value
procedure recognizes another instance “Kabul” of CAPITAL-CITY, but no more
instances of FINANCIAL-CAPITAL, the system accepts CAPITAL-CITY and
eliminates FINANCIAL-CAPITAL. We have implemented four concept disam-
biguation rules [5].

(2) Relation retrieval: The crux of the relation retrieval process is about
finding appropriate edges between two concept nodes. An obvious resolution
is to find all possible paths between any two candidate concepts. It would be
easier for users to reject inapplicable edges rather than to add new relations. But
this resolution has a serious performance difficulty. To find all paths between two
nodes in a graph is NP-complete.7 Hence we must seek an alternative resolution.

Different paths in an ontology graph refer to relations with different mean-
ings. From our studies we have found that in general a shorter path represents a
closer or more popular relationship between two concepts. On the contrary, an
extra-long path often means a very uncommon relation between the two concepts
within the domain. Hence it is reasonable to set a threshold length to reduce the
search space and thus the complexity of the edge-searching algorithm.

In the implementation, we adapted the well-known Dijkstra’s algorithm. Al-
though the original algorithm computes only the shortest path, it can be eas-
ily extended by repeatedly computing the next shortest path until a threshold
length is reached. Since Dijkstra’s algorithm has polynomial time complexity
and the threshold length is fixed and finite, the time complexity of this updated
algorithm is also polynomial.

After this edge-searching procedure, the system perform a subgraph-detection
procedure to finalize the target domain. Quite often, the edge-searching proce-
dure results in multiple unconnected subgraphs. Normally, two separate sub-
graphs represent two independent domains. We simply assume that the largest
subgraph contains the majority of concepts of interest, and thus the system
keeps only the largest generated subgraph. Coincidentally, by rejecting concepts
that are not in the selected subgraph, we further improve accuracy of domain
recognition.

(3) Constraint Discovery. There are numerous types of constraints applied
in ontologies; another paper would be necessary to enumerate them all and

7 Finding the longest path between two graph nodes is a well-known NP-complete
problem [9]. If we could solve finding all paths in polynomial time, by sorting the re-
sults in polynomial time, finding the longest path could also be solved in polynomial
time—a contradiction.



Generating Ontologies via ... 7

to study the methods for reusing them. For our purpose in demonstrating au-
tomated ontology reuse, we limited our study to the discovery of cardinality
constraints. Unlike many other constraints in ontologies, cardinality constraints
contain quantitative scales, which make the automatic discovery process become
interesting.

We have implemented a cross-counting algorithm to discover cardinality con-
straints from NL documents.8 Each cardinality constraint consists of a pair with
a minimum number and a maximum number [min : max]. The cross-counting
algorithm counts the instantiated numbers of paired concepts, from which the
system can decide these minimum and maximum numbers. For example, sup-
pose that in document D1 concept A is instantiated by a1, and there are no
instantiations for concept B in the same document. In another document D2,
however, concept A is instantiated by the same a1 and concept B is instantiated
by b2. With these two documents, we can determine that the minimum cardi-
nality constraint of concept A to the relation AB is 0 because for an instance
a1 of A, it may not always have an instance of B appearing at the same time.
The details of this algorithm are presented elsewhere [5].

Ontology Refinement After finding concepts, relations, and constraints, com-
posing them together into an ontology is straightforward. The result probably
will not precisely describe the target domain. There are four basic human oper-
ations for revising the components in an automatically generated ontology: (1)
remove the unexpected, (2) rename the inappropriate, (3) modify the incorrect,
and (4) add the missing. In general, a preferred ontology reuse procedure will
produce outputs requiring less revision operations on (3) and (4), especially the
latter. It is in general much easier for users to reject unexpected components
than to add something totally new into an ontology by themselves. Based on
this refinement perspective, our ontology reuse system preserves as much useful
information as possible, minimizing the need for addition by users.

4 Experiments and Discussions

This section describes a series of experiments with our ontology reuse system.
We cast our discussion in five lessons that we believe are pertinent to future
automated ontology reuse studies.

Lesson 1. Ontology coverage is best specified by the leaf concepts.

For ontology reuse, the coverage of an ontology is the reusable domain de-
scribed by an ontology. Users for ontology reuse would be justified in believing
that we can straightforwardly determine the coverage of an ontology by its root
definition. For example, when the root concept of an ontology is Book, this on-
tology should cover the domain of books; when the root concept is Finanical

Report, this ontology must cover the domain of financial reports. Since the root

8 The original µK ontology does not contain information about cardinality constraints.



8 Yihong Ding and et. al.

of the µK ontology is ALL (which means everything), as näıve users we began
our study believing that we could reuse the µK ontology to describe arbitrary
domains.

Our initial experiments produced disappointing output. Usually we either
got no result or the composed ontologies were outside the expected domains.
Careful study of the results located the problem: the real coverage of an on-
tology is not determined by its root definition. Although theoretically the root
definition of an ontology should be an abstract characterization of the entire
domain, often ontology developers do not properly circumscribe the domain and
thus a significant portion of the domain is often not reusable. Instead, the real
reusable domain of an ontology (i.e. the real coverage of an ontology) is primarily
determined by the union of its leaf-level concepts, a subset of the root-specified
domain. For example, if a NATION ontology contains leaf-level concepts like
USA, Russia, China, Australia, etc., but lacks Montenegro, the concept Montenegro

is not reusable with respect to this ontology. This observation is fairly simple
though critical for ontology reuse research; interestingly, previous ontology reuse
publications miss this point.

Lesson 2. Extend ontology coverage with lexicons and data recognizers.

To improve the degree of reusability of existing ontologies, we want to boost
the coverage of an ontology so that it is closer to its root definition. We refer
to this as the “applicable coverage” of an ontology, where the term “applicable”
means the new concepts can be evaluated by an ontology reuse program.

To boost the applicable coverage of our source ontology during the source-
ontology preparation stage, we associated lexicons and data recognizers with the
leaf-level concepts. We have named the result “instance recognition semantics”,
or formal specifications that identify instances of a concept C in ordinary text [6].
These are essential to automating ontology reuse.

We further populate the ontology with some upper-level ontology concepts.
For example, prior to June 3, 2006 Montenegro was not an independent nation,
so the original µK ontology did not have a leaf concept Montenegro under NA-

TION. This portion of the ontology becomes non-reusable for many situations
involving Montenegro after June 3, 2006. It is a very complicated issue to get
permissions and then properly modify an ontology that is created by somebody
else. For the purpose of automated reuse, however, we developed a simple and
effective (though imperfect) alternative. We simply bind a lexicon set to the
non-leaf concept NATION, thus adding the name of Montenegro into the lexicon
after June 3, 2006. Although we still have not formally specified Montenegro as
a country in the ontology, we have rendered the original source ontology reusable
for situations involving the new country Montenegro. In the new generated on-
tology, instead of a specific concept Montenegro as an independent nation, we can
correctly generate an upper-level concept—NATION, and thus all the properties
of NATION become applicable in this new generated domain ontology. With such
a technique, we artificially boost the applicable coverage of the source ontology.

In our experiments we augmented lexicons and data recognizers for leaf-level
concepts in the µK ontology and their superclasses up to 2 levels above (on



Generating Ontologies via ... 9

average). The union of these augmented concepts and their relations composes
the applicable coverage of the source ontology in our experiments.

Lesson 3. For known target domains, ontology reuse is already possible and
even valuable.

After having prepared the source ontology, we started our real experiments.
Based on Lesson 1, we decided to focus our experiments on several selected do-
mains rather than on arbitrary domains. We want human inspection to assure
that the projecting domains have significant overlap with the applicable cover-
age of our source ontology. In particular, we chose experiments in three narrow
domains: car advertisements, apartment rentals, and nation descriptions. This
paper only briefly summarizes our results; see [5] for details.

First we list some basic settings and statistics of our experiments. Each of
the three target domains contains a dozen to twenty concepts. For each domain,
we feed four to seven cleaned sample Web pages (NL documents) to the ontology
reuse system. The source ontology has been pre-integrated and augmented by its
applicable coverage. In order to evaluate the performance of our outputs, we had
human experts separately create ontologies for each target domain. We adopted
the human-created ontologies as a gold standard to which the automatically
generated ontologies were compared for precision and recall.

In general, we obtained low precision results. In the three target domains,
the best precision was 48% for concept generation, 14% for relation generation,
and 10% for cardinality constraint generation. The news is not all bad. Low pre-
cision implies the need for more rejections of corresponding components within
a generated ontology. For humans, as mentioned earlier, rejecting inappropriate
ontology components is much easier than adding new ontology ones. Hence our
strategy is to favor greater recall values (i.e. less addition) over greater precision
values (i.e. less rejection).

We updated the traditional recall calculation equation as follows:

updated recall = # correctly-reused / # existing-in-source

where the numerator is the number of component types (i.e. either concept,
relationship, or constraint) correctly reused in a generated ontology; the denom-
inator is the number of component types contained in input sources (both from
NL documents and source ontologies). We use this formula because not every-
thing defined in the human-created ontology is also identifiable by the inputs.
For example, human experts have defined a concept FEATURE in the car-ads
ontology, a concept missing from the source µK ontology. Hence it is impossible
for a system to reuse an non-pre-existing concept. To be more equitable, our
recall calculation must eliminate this type of error.

With the new formula, in the three testing domains our worst recall values
were 83% (concept generation), 50% (relation generation), and 50% (cardinality
constraint generation). All the best recall values were close or equal to 100%.
Our ontology reuse system performs quite well even though it still is a prototype.
The recall values show that we may reduce at least half of the human effort in



10 Yihong Ding and et. al.

ontology construction through ontology reuse when a target ontology is prop-
erly contained in the applicable coverage of the source ontology. Considering
the expense of training professional ontologists and the time they need to build
and tune ontologies, 50% already represents substantial savings. There are many
ways to further improve the performance of the system. Already, though, our ex-
periments demonstrate that ontology reuse is no longer “far from an automated
process” [13].

Lesson 4. Ontology modularization facilitates automated ontology reuse.

During our experiments, another metric studied was running time. In general
the system took about 1000 seconds to resolve all the ontology components with
respect to about 50 to 100 candidate concepts on a Pentium 800 MHz single
processor machine. This execution time is rather short compared to the time
required for manually creating an ontology of the same scale. Our benchmark
showed that almost 90% of execution time was spent on the relation retrieval
process. Though we may further improve this time performance by optimizing
our implementation, the problem lies mainly in the magnitude of the source
ontology (over 5000 concepts and over 70000 relationships to explore).

Reducing the execution time of relation retrieval should be possible by using
modular ontologies rather than a single large-scale one. Modular ontologies are
usually small and designed to be self-contained. An ontology module is self-
contained if all of its defined concepts are specified in terms of other concepts
in the module, and do not reference any other concepts outside the module. As
soon as several major concepts in a module are selected as candidate concepts,
an ontology reuse system may decide to directly reuse the entire module rather
than perform a costly relation retrieval algorithm. Hence the execution time for
relation retrieval can be significantly reduced.

To pursue this issue, we manually pruned several comparatively indepen-
dent clusters of ontology components from our source ontology and used them
as individual modules. Since these clusters originated from a previously unified
ontology, we did not need to further integrate them. The same experiments were
re-run with these multiple “modular” ontologies. On average the system took less
than 300 seconds—saving more than 70% of run time—to resolve all the ontology
components for about 50 to 100 candidate concepts. Because these pruned clus-
ters were not true, self-contained modular ontologies, the performance in terms
of precision and recall decreased in this experiment. Saving execution time by
replacing a large unified ontology with multiple small modular ontologies is thus
a convincing strategy. By using really well-designed modular ontologies, our on-
tology reuse system achieves both higher precision and recall values, as well as
faster run-time performance.

Lesson 5. Sample documents may help us mine “latent” knowledge from texts.

We also carefully studied our low-precision experimental results. Many reused
concepts and relations were beyond the scope of the expert-created ontologies.
Yet they were not all meaningless or useless. On the contrary, we found that



Generating Ontologies via ... 11

useful information—latent in the document but beyond the topic directly at
hand—could be gleaned from the results.

For example, we have applied our tool to process some U.S. Department
of Energy (DOE) abstracts. The expert who created a reference ontology was
only interested in the generic information about these abstracts, such as the
theme of a document, the number of figures and tables, etc. But our ontology
reuse tool found much more useful information. For instance, in one sample
abstract it generated some concepts and relations indicating that the crude oil
price dropped in the year 1986. Although this was not what the human expert
originally expected and it was outside the expert-specified domain of interest,
we could not deny that this type of information could be very valuable.

Such latent information is not really what people cannot find. But they are
easily overlooked by human readers, especially when reading through many such
documents. Especially within the business domain, people want to mine this type
of latent information from numerous financial documents and business news. We
believe that the automated ontology reuse mechanism may provide the business
community an alternative solution for seeking valuable latent information.

5 Conclusion

We have presented an automated ontology reuse approach. Although we only ap-
plied our system to reuse the µK ontology, our methodology supports automated
ontology reuse in general. Informed by our experiments on real-world examples,
we have summarized five lessons that are constructive for future exploration of
ontology reuse studies. In essence, we conclude that ontology reuse is no longer
“far from an automated process” [13].

In the meantime, a few critical problems remain to be solved. One is to
automatically decide whether a target domain is within the reusable coverage of
an integrated source ontology. If the majority of a target domain lies outside the
source ontology, ontology reuse becomes nothing but extra overhead. Also, we
need to experiment with applying modular ontologies for ontology reuse. Until
now, the research of modular ontologies is still at the stage of theoretical analysis.
We need practical study cases to push this research field forward. The study of
instance recognition semantics should be paired with modular ontology research
to improve the reusability of modular ontologies. Last but not least, mining
latent information through ontology reuse is an interesting research topic. More
exploration on this topic may bring many benefits to users, especially in the
business domain.

So far there are few published studies on automated ontology reuse research.
We hope that our results draw more attention to this field and facilitate wider
public adoption of the Semantic Web.

References

1. H. Alani, S. Harris, and B. O’Neil. Ontology winnowing: A case study on the AKT
reference ontology. In Proc. Int’l Conference on Intelligent Agents, Web Technology



12 Yihong Ding and et. al.

and Internet Commerce (IAWTIC’2005), Vienna, Austria, Nov. 2005.
2. J. Bao, D. Caraagea, and V. Honavar. Modular ontology – a formal investigation

of semantics and expressivity. In Proc. First Asian Semantic Web Conference
(ASWC 2006), Beijing, China, Sept. 2006. (in press).

3. E. Bontas, M. Mochol, and R. Tolksdorf. Case studies on ontology reuse. In Proc.
5th Int’l Conf. on Knowledge Management (I-Know05), Graz, Austria, 2005.

4. P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, and H. Stuckenschmidt.
Contextualizing ontologies. Journal of Web Semantics, 1(4):325–343, Oct. 2004.

5. Y. Ding. Semi-automatic generation of resilient data-extraction ontologies. Mas-
ter’s thesis, Brigham Young University, Provo, Utah, June 2003.

6. Y. Ding, D. Embley, and S. Liddle. Automatic creation and simplified querying
of semantic web content: An approach based on information-extraction ontologies.
In Proceedings of the first Asian Semantic Web Conference (ASWC 2006) LNCS
4185, pages 400–414, Beijing, China, Sept. 2006.

7. Y. Ding and D. Fensel. Ontology library systems: The key for successful ontology
reuse. In Proc. First Semantic Web Working Symposium (SWWS’01), Stanford,
CA, July 2001.

8. B. Grau, B. Parsia, E. Sirin, and A. Kalyanpur. Modularizing OWL ontologies. In
Proc. KCAP-2005 Workshop on Ontology Management, Banff, Canada, Oct. 2005.

9. D. Hochbaum. Approximation Algorithms for NP-Hard Problems. PWS Publishing
Company, Boston, MA, 1997.

10. K. Mahesh. Ontology development for machine translation: Ideology and methodol-
ogy. Technical Report MCCS-96-292, Computer Research Laboratory, New Mexico
State Univeristy, 1996.

11. N. Noy and M. Musen. Specifying ontology views by traversal. In Proc. Third
International Semantic Web Conference (ISWC 2004), pages 713–725, Hiroshima,
Japan, Nov. 2004.

12. H. Stuckenschmidt and M. Klein. Structure-based partitioning of large class hi-
erarchies. In Proc. Third International Semantic Web Conference (ISWC 2004),
pages 289–303, Hiroshima, Japan, Nov. 2004.

13. M. Uschold, M. Healy, K. Williamson, P. Clark, and S. Woods. Ontology reuse
and application. In Proc. International Conference on Formal Ontology and Infor-
mation Systems (FOIS’98), pages 179–192, Trento, Italy, June 1998.

14. M. Uschold and M. King. Towards a methodology for building ontologies. In Proc.
Workshop on Basic Ontological Issues in Knowledge Sharing in conjunction with
IJCAI-95, Montreal, Canada, 1995.


